1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
|
HTTPbis Working Group R. Fielding, Ed.
Internet-Draft Day Software
Obsoletes: 2616 (if approved) J. Gettys
Updates: 2817 (if approved) Alcatel-Lucent
Intended status: Standards Track J. Mogul
Expires: February 5, 2011 HP
H. Frystyk
Microsoft
L. Masinter
Adobe Systems
P. Leach
Microsoft
T. Berners-Lee
W3C/MIT
Y. Lafon, Ed.
W3C
J. Reschke, Ed.
greenbytes
August 4, 2010
HTTP/1.1, part 1: URIs, Connections, and Message Parsing
draft-ietf-httpbis-p1-messaging-11
Abstract
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypertext information
systems. HTTP has been in use by the World Wide Web global
information initiative since 1990. This document is Part 1 of the
seven-part specification that defines the protocol referred to as
"HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 1 provides
an overview of HTTP and its associated terminology, defines the
"http" and "https" Uniform Resource Identifier (URI) schemes, defines
the generic message syntax and parsing requirements for HTTP message
frames, and describes general security concerns for implementations.
Editorial Note (To be removed by RFC Editor)
Discussion of this draft should take place on the HTTPBIS working
group mailing list (ietf-http-wg@w3.org). The current issues list is
at <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
documents (including fancy diffs) can be found at
<http://tools.ietf.org/wg/httpbis/>.
The changes in this draft are summarized in Appendix D.12.
Status of This Memo
Fielding, et al. Expires February 5, 2011 [Page 1]
Internet-Draft HTTP/1.1, Part 1 August 2010
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on February 5, 2011.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Syntax Notation . . . . . . . . . . . . . . . . . . . . . 7
1.2.1. ABNF Extension: #rule . . . . . . . . . . . . . . . . 7
Fielding, et al. Expires February 5, 2011 [Page 2]
Internet-Draft HTTP/1.1, Part 1 August 2010
1.2.2. Basic Rules . . . . . . . . . . . . . . . . . . . . . 8
1.2.3. ABNF Rules defined in other Parts of the
Specification . . . . . . . . . . . . . . . . . . . . 10
2. HTTP-related architecture . . . . . . . . . . . . . . . . . . 10
2.1. Client/Server Messaging . . . . . . . . . . . . . . . . . 10
2.2. Intermediaries . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. Transport Independence . . . . . . . . . . . . . . . . . . 14
2.5. HTTP Version . . . . . . . . . . . . . . . . . . . . . . . 14
2.6. Uniform Resource Identifiers . . . . . . . . . . . . . . . 16
2.6.1. http URI scheme . . . . . . . . . . . . . . . . . . . 16
2.6.2. https URI scheme . . . . . . . . . . . . . . . . . . . 18
2.6.3. http and https URI Normalization and Comparison . . . 18
3. HTTP Message . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1. Message Parsing Robustness . . . . . . . . . . . . . . . . 20
3.2. Header Fields . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Message Body . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. General Header Fields . . . . . . . . . . . . . . . . . . 25
4. Request . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1. Request-Line . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1. Method . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2. request-target . . . . . . . . . . . . . . . . . . . . 27
4.2. The Resource Identified by a Request . . . . . . . . . . . 29
4.3. Effective Request URI . . . . . . . . . . . . . . . . . . 29
5. Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1. Status-Line . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.1. Status Code and Reason Phrase . . . . . . . . . . . . 31
6. Protocol Parameters . . . . . . . . . . . . . . . . . . . . . 32
6.1. Date/Time Formats: Full Date . . . . . . . . . . . . . . . 32
6.2. Transfer Codings . . . . . . . . . . . . . . . . . . . . . 34
6.2.1. Chunked Transfer Coding . . . . . . . . . . . . . . . 35
6.2.2. Compression Codings . . . . . . . . . . . . . . . . . 37
6.2.3. Transfer Coding Registry . . . . . . . . . . . . . . . 38
6.3. Product Tokens . . . . . . . . . . . . . . . . . . . . . . 39
6.4. Quality Values . . . . . . . . . . . . . . . . . . . . . . 39
7. Connections . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1. Persistent Connections . . . . . . . . . . . . . . . . . . 39
7.1.1. Purpose . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.2. Overall Operation . . . . . . . . . . . . . . . . . . 40
7.1.3. Proxy Servers . . . . . . . . . . . . . . . . . . . . 42
7.1.4. Practical Considerations . . . . . . . . . . . . . . . 44
7.2. Message Transmission Requirements . . . . . . . . . . . . 45
7.2.1. Persistent Connections and Flow Control . . . . . . . 45
7.2.2. Monitoring Connections for Error Status Messages . . . 45
7.2.3. Use of the 100 (Continue) Status . . . . . . . . . . . 46
7.2.4. Client Behavior if Server Prematurely Closes
Connection . . . . . . . . . . . . . . . . . . . . . . 48
8. Miscellaneous notes that might disappear . . . . . . . . . . . 49
Fielding, et al. Expires February 5, 2011 [Page 3]
Internet-Draft HTTP/1.1, Part 1 August 2010
8.1. Scheme aliases considered harmful . . . . . . . . . . . . 49
8.2. Use of HTTP for proxy communication . . . . . . . . . . . 49
8.3. Interception of HTTP for access control . . . . . . . . . 49
8.4. Use of HTTP by other protocols . . . . . . . . . . . . . . 49
8.5. Use of HTTP by media type specification . . . . . . . . . 49
9. Header Field Definitions . . . . . . . . . . . . . . . . . . . 49
9.1. Connection . . . . . . . . . . . . . . . . . . . . . . . . 49
9.2. Content-Length . . . . . . . . . . . . . . . . . . . . . . 50
9.3. Date . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3.1. Clockless Origin Server Operation . . . . . . . . . . 52
9.4. Host . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.5. TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.6. Trailer . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.7. Transfer-Encoding . . . . . . . . . . . . . . . . . . . . 55
9.8. Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.8.1. Upgrade Token Registry . . . . . . . . . . . . . . . . 56
9.9. Via . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 59
10.1. Header Field Registration . . . . . . . . . . . . . . . . 59
10.2. URI Scheme Registration . . . . . . . . . . . . . . . . . 59
10.3. Internet Media Type Registrations . . . . . . . . . . . . 59
10.3.1. Internet Media Type message/http . . . . . . . . . . . 59
10.3.2. Internet Media Type application/http . . . . . . . . . 61
10.4. Transfer Coding Registry . . . . . . . . . . . . . . . . . 62
10.5. Upgrade Token Registration . . . . . . . . . . . . . . . . 62
11. Security Considerations . . . . . . . . . . . . . . . . . . . 62
11.1. Personal Information . . . . . . . . . . . . . . . . . . . 63
11.2. Abuse of Server Log Information . . . . . . . . . . . . . 63
11.3. Attacks Based On File and Path Names . . . . . . . . . . . 63
11.4. DNS Spoofing . . . . . . . . . . . . . . . . . . . . . . . 63
11.5. Proxies and Caching . . . . . . . . . . . . . . . . . . . 64
11.6. Denial of Service Attacks on Proxies . . . . . . . . . . . 65
12. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 65
13. References . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.1. Normative References . . . . . . . . . . . . . . . . . . . 66
13.2. Informative References . . . . . . . . . . . . . . . . . . 68
Appendix A. Tolerant Applications . . . . . . . . . . . . . . . . 70
Appendix B. Compatibility with Previous Versions . . . . . . . . 71
B.1. Changes from HTTP/1.0 . . . . . . . . . . . . . . . . . . 71
B.1.1. Changes to Simplify Multi-homed Web Servers and
Conserve IP Addresses . . . . . . . . . . . . . . . . 72
B.2. Compatibility with HTTP/1.0 Persistent Connections . . . . 72
B.3. Changes from RFC 2616 . . . . . . . . . . . . . . . . . . 73
Appendix C. Collected ABNF . . . . . . . . . . . . . . . . . . . 74
Appendix D. Change Log (to be removed by RFC Editor before
publication) . . . . . . . . . . . . . . . . . . . . 78
D.1. Since RFC2616 . . . . . . . . . . . . . . . . . . . . . . 78
D.2. Since draft-ietf-httpbis-p1-messaging-00 . . . . . . . . . 78
Fielding, et al. Expires February 5, 2011 [Page 4]
Internet-Draft HTTP/1.1, Part 1 August 2010
D.3. Since draft-ietf-httpbis-p1-messaging-01 . . . . . . . . . 80
D.4. Since draft-ietf-httpbis-p1-messaging-02 . . . . . . . . . 81
D.5. Since draft-ietf-httpbis-p1-messaging-03 . . . . . . . . . 81
D.6. Since draft-ietf-httpbis-p1-messaging-04 . . . . . . . . . 82
D.7. Since draft-ietf-httpbis-p1-messaging-05 . . . . . . . . . 82
D.8. Since draft-ietf-httpbis-p1-messaging-06 . . . . . . . . . 83
D.9. Since draft-ietf-httpbis-p1-messaging-07 . . . . . . . . . 84
D.10. Since draft-ietf-httpbis-p1-messaging-08 . . . . . . . . . 84
D.11. Since draft-ietf-httpbis-p1-messaging-09 . . . . . . . . . 85
D.12. Since draft-ietf-httpbis-p1-messaging-10 . . . . . . . . . 85
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Fielding, et al. Expires February 5, 2011 [Page 5]
Internet-Draft HTTP/1.1, Part 1 August 2010
1. Introduction
The Hypertext Transfer Protocol (HTTP) is an application-level
request/response protocol that uses extensible semantics and MIME-
like message payloads for flexible interaction with network-based
hypertext information systems. HTTP relies upon the Uniform Resource
Identifier (URI) standard [RFC3986] to indicate request targets and
relationships between resources. Messages are passed in a format
similar to that used by Internet mail [RFC5322] and the Multipurpose
Internet Mail Extensions (MIME) [RFC2045] (see Appendix A of [Part3]
for the differences between HTTP and MIME messages).
HTTP is a generic interface protocol for information systems. It is
designed to hide the details of how a service is implemented by
presenting a uniform interface to clients that is independent of the
types of resources provided. Likewise, servers do not need to be
aware of each client's purpose: an HTTP request can be considered in
isolation rather than being associated with a specific type of client
or a predetermined sequence of application steps. The result is a
protocol that can be used effectively in many different contexts and
for which implementations can evolve independently over time.
HTTP is also designed for use as an intermediation protocol for
translating communication to and from non-HTTP information systems.
HTTP proxies and gateways can provide access to alternative
information services by translating their diverse protocols into a
hypertext format that can be viewed and manipulated by clients in the
same way as HTTP services.
One consequence of HTTP flexibility is that the protocol cannot be
defined in terms of what occurs behind the interface. Instead, we
are limited to defining the syntax of communication, the intent of
received communication, and the expected behavior of recipients. If
the communication is considered in isolation, then successful actions
ought to be reflected in corresponding changes to the observable
interface provided by servers. However, since multiple clients might
act in parallel and perhaps at cross-purposes, we cannot require that
such changes be observable beyond the scope of a single response.
This document is Part 1 of the seven-part specification of HTTP,
defining the protocol referred to as "HTTP/1.1" and obsoleting
[RFC2616]. Part 1 describes the architectural elements that are used
or referred to in HTTP, defines the "http" and "https" URI schemes,
describes overall network operation and connection management, and
defines HTTP message framing and forwarding requirements. Our goal
is to define all of the mechanisms necessary for HTTP message
handling that are independent of message semantics, thereby defining
the complete set of requirements for message parsers and message-
Fielding, et al. Expires February 5, 2011 [Page 6]
Internet-Draft HTTP/1.1, Part 1 August 2010
forwarding intermediaries.
1.1. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
An implementation is not compliant if it fails to satisfy one or more
of the "MUST" or "REQUIRED" level requirements for the protocols it
implements. An implementation that satisfies all the "MUST" or
"REQUIRED" level and all the "SHOULD" level requirements for its
protocols is said to be "unconditionally compliant"; one that
satisfies all the "MUST" level requirements but not all the "SHOULD"
level requirements for its protocols is said to be "conditionally
compliant".
1.2. Syntax Notation
This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234].
The following core rules are included by reference, as defined in
[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit
sequence of data), SP (space), VCHAR (any visible [USASCII]
character), and WSP (whitespace).
As a syntactic convention, ABNF rule names prefixed with "obs-"
denote "obsolete" grammar rules that appear for historical reasons.
1.2.1. ABNF Extension: #rule
The #rule extension to the ABNF rules of [RFC5234] is used to improve
readability.
A construct "#" is defined, similar to "*", for defining comma-
delimited lists of elements. The full form is "<n>#<m>element"
indicating at least <n> and at most <m> elements, each separated by a
single comma (",") and optional whitespace (OWS, Section 1.2.2).
Thus,
1#element => element *( OWS "," OWS element )
Fielding, et al. Expires February 5, 2011 [Page 7]
Internet-Draft HTTP/1.1, Part 1 August 2010
and:
#element => [ 1#element ]
and for n >= 1 and m > 1:
<n>#<m>element => element <n-1>*<m-1>( OWS "," OWS element )
For compatibility with legacy list rules, recipients SHOULD accept
empty list elements. In other words, consumers would follow the list
productions:
#element => [ ( "," / element ) *( OWS "," [ OWS element ] ) ]
1#element => *( "," OWS ) element *( OWS "," [ OWS element ] )
Note that empty elements do not contribute to the count of elements
present, though.
For example, given these ABNF productions:
example-list = 1#example-list-elmt
example-list-elmt = token ; see Section 1.2.2
Then these are valid values for example-list (not including the
double quotes, which are present for delimitation only):
"foo,bar"
" foo ,bar,"
" foo , ,bar,charlie "
"foo ,bar, charlie "
But these values would be invalid, as at least one non-empty element
is required:
""
","
", ,"
Appendix C shows the collected ABNF, with the list rules expanded as
explained above.
1.2.2. Basic Rules
HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
protocol elements other than the message-body (see Appendix A for
tolerant applications).
Fielding, et al. Expires February 5, 2011 [Page 8]
Internet-Draft HTTP/1.1, Part 1 August 2010
This specification uses three rules to denote the use of linear
whitespace: OWS (optional whitespace), RWS (required whitespace), and
BWS ("bad" whitespace).
The OWS rule is used where zero or more linear whitespace characters
might appear. OWS SHOULD either not be produced or be produced as a
single SP character. Multiple OWS characters that occur within
field-content SHOULD be replaced with a single SP before interpreting
the field value or forwarding the message downstream.
RWS is used when at least one linear whitespace character is required
to separate field tokens. RWS SHOULD be produced as a single SP
character. Multiple RWS characters that occur within field-content
SHOULD be replaced with a single SP before interpreting the field
value or forwarding the message downstream.
BWS is used where the grammar allows optional whitespace for
historical reasons but senders SHOULD NOT produce it in messages.
HTTP/1.1 recipients MUST accept such bad optional whitespace and
remove it before interpreting the field value or forwarding the
message downstream.
OWS = *( [ obs-fold ] WSP )
; "optional" whitespace
RWS = 1*( [ obs-fold ] WSP )
; "required" whitespace
BWS = OWS
; "bad" whitespace
obs-fold = CRLF
; see Section 3.2
Many HTTP/1.1 header field values consist of words (token or quoted-
string) separated by whitespace or special characters. These special
characters MUST be in a quoted string to be used within a parameter
value (as defined in Section 6.2).
word = token / quoted-string
token = 1*tchar
tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"
/ "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
/ DIGIT / ALPHA
; any VCHAR, except special
special = "(" / ")" / "<" / ">" / "@" / ","
/ ";" / ":" / "\" / DQUOTE / "/" / "["
Fielding, et al. Expires February 5, 2011 [Page 9]
Internet-Draft HTTP/1.1, Part 1 August 2010
/ "]" / "?" / "=" / "{" / "}"
A string of text is parsed as a single word if it is quoted using
double-quote marks.
quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
qdtext = OWS / %x21 / %x23-5B / %x5D-7E / obs-text
; OWS / <VCHAR except DQUOTE and "\"> / obs-text
obs-text = %x80-FF
The backslash character ("\") can be used as a single-character
quoting mechanism within quoted-string constructs:
quoted-pair = "\" ( WSP / VCHAR / obs-text )
Producers SHOULD NOT escape characters that do not require escaping
(i.e., other than DQUOTE and the backslash character).
1.2.3. ABNF Rules defined in other Parts of the Specification
The ABNF rules below are defined in other parts:
request-header = <request-header, defined in [Part2], Section 3>
response-header = <response-header, defined in [Part2], Section 5>
MIME-Version = <MIME-Version, defined in [Part3], Appendix A.1>
Cache-Control = <Cache-Control, defined in [Part6], Section 3.4>
Pragma = <Pragma, defined in [Part6], Section 3.4>
Warning = <Warning, defined in [Part6], Section 3.6>
2. HTTP-related architecture
HTTP was created for the World Wide Web architecture and has evolved
over time to support the scalability needs of a worldwide hypertext
system. Much of that architecture is reflected in the terminology
and syntax productions used to define HTTP.
2.1. Client/Server Messaging
HTTP is a stateless request/response protocol that operates by
exchanging messages across a reliable transport or session-layer
connection. An HTTP "client" is a program that establishes a
connection to a server for the purpose of sending one or more HTTP
requests. An HTTP "server" is a program that accepts connections in
order to service HTTP requests by sending HTTP responses.
Fielding, et al. Expires February 5, 2011 [Page 10]
Internet-Draft HTTP/1.1, Part 1 August 2010
Note that the terms client and server refer only to the roles that
these programs perform for a particular connection. The same program
might act as a client on some connections and a server on others. We
use the term "user agent" to refer to the program that initiates a
request, such as a WWW browser, editor, or spider (web-traversing
robot), and the term "origin server" to refer to the program that can
originate authoritative responses to a request. For general
requirements, we use the term "sender" to refer to whichever
component sent a given message and the term "recipient" to refer to
any component that receives the message.
Most HTTP communication consists of a retrieval request (GET) for a
representation of some resource identified by a URI. In the simplest
case, this might be accomplished via a single bidirectional
connection (===) between the user agent (UA) and the origin server
(O).
request >
UA ======================================= O
< response
A client sends an HTTP request to the server in the form of a request
message (Section 4), beginning with a method, URI, and protocol
version, followed by MIME-like header fields containing request
modifiers, client information, and payload metadata, an empty line to
indicate the end of the header section, and finally the payload body
(if any).
A server responds to the client's request by sending an HTTP response
message (Section 5), beginning with a status line that includes the
protocol version, a success or error code, and textual reason phrase,
followed by MIME-like header fields containing server information,
resource metadata, and payload metadata, an empty line to indicate
the end of the header section, and finally the payload body (if any).
The following example illustrates a typical message exchange for a
GET request on the URI "http://www.example.com/hello.txt":
client request:
GET /hello.txt HTTP/1.1
User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3
Host: www.example.com
Accept: */*
Fielding, et al. Expires February 5, 2011 [Page 11]
Internet-Draft HTTP/1.1, Part 1 August 2010
server response:
HTTP/1.1 200 OK
Date: Mon, 27 Jul 2009 12:28:53 GMT
Server: Apache
Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"
Accept-Ranges: bytes
Content-Length: 14
Vary: Accept-Encoding
Content-Type: text/plain
Hello World!
2.2. Intermediaries
A more complicated situation occurs when one or more intermediaries
are present in the request/response chain. There are three common
forms of intermediary: proxy, gateway, and tunnel. In some cases, a
single intermediary might act as an origin server, proxy, gateway, or
tunnel, switching behavior based on the nature of each request.
> > > >
UA =========== A =========== B =========== C =========== O
< < < <
The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.
Some HTTP communication options might apply only to the connection
with the nearest, non-tunnel neighbor, only to the end-points of the
chain, or to all connections along the chain. Although the diagram
is linear, each participant might be engaged in multiple,
simultaneous communications. For example, B might be receiving
requests from many clients other than A, and/or forwarding requests
to servers other than C, at the same time that it is handling A's
request.
We use the terms "upstream" and "downstream" to describe various
requirements in relation to the directional flow of a message: all
messages flow from upstream to downstream. Likewise, we use the
terms "inbound" and "outbound" to refer to directions in relation to
the request path: "inbound" means toward the origin server and
"outbound" means toward the user agent.
A "proxy" is a message forwarding agent that is selected by the
client, usually via local configuration rules, to receive requests
for some type(s) of absolute URI and attempt to satisfy those
Fielding, et al. Expires February 5, 2011 [Page 12]
Internet-Draft HTTP/1.1, Part 1 August 2010
requests via translation through the HTTP interface. Some
translations are minimal, such as for proxy requests for "http" URIs,
whereas other requests might require translation to and from entirely
different application-layer protocols. Proxies are often used to
group an organization's HTTP requests through a common intermediary
for the sake of security, annotation services, or shared caching.
A "gateway" (a.k.a., "reverse proxy") is a receiving agent that acts
as a layer above some other server(s) and translates the received
requests to the underlying server's protocol. Gateways are often
used for load balancing or partitioning HTTP services across multiple
machines. Unlike a proxy, a gateway receives requests as if it were
the origin server for the target resource; the requesting client will
not be aware that it is communicating with a gateway. A gateway
communicates with the client as if the gateway is the origin server
and thus is subject to all of the requirements on origin servers for
that connection. A gateway communicates with inbound servers using
any protocol it desires, including private extensions to HTTP that
are outside the scope of this specification.
A "tunnel" acts as a blind relay between two connections without
changing the messages. Once active, a tunnel is not considered a
party to the HTTP communication, though the tunnel might have been
initiated by an HTTP request. A tunnel ceases to exist when both
ends of the relayed connection are closed. Tunnels are used to
extend a virtual connection through an intermediary, such as when
transport-layer security is used to establish private communication
through a shared firewall proxy.
2.3. Caches
A "cache" is a local store of previous response messages and the
subsystem that controls its message storage, retrieval, and deletion.
A cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server MAY employ a cache, though a cache
cannot be used by a server while it is acting as a tunnel.
The effect of a cache is that the request/response chain is shortened
if one of the participants along the chain has a cached response
applicable to that request. The following illustrates the resulting
chain if B has a cached copy of an earlier response from O (via C)
for a request which has not been cached by UA or A.
> >
UA =========== A =========== B - - - - - - C - - - - - - O
< <
Fielding, et al. Expires February 5, 2011 [Page 13]
Internet-Draft HTTP/1.1, Part 1 August 2010
A response is "cacheable" if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. Even
when a response is cacheable, there might be additional constraints
placed by the client or by the origin server on when that cached
response can be used for a particular request. HTTP requirements for
cache behavior and cacheable responses are defined in Section 2 of
[Part6].
There are a wide variety of architectures and configurations of
caches and proxies deployed across the World Wide Web and inside
large organizations. These systems include national hierarchies of
proxy caches to save transoceanic bandwidth, systems that broadcast
or multicast cache entries, organizations that distribute subsets of
cached data via optical media, and so on.
2.4. Transport Independence
HTTP systems are used in a wide variety of environments, from
corporate intranets with high-bandwidth links to long-distance
communication over low-power radio links and intermittent
connectivity.
HTTP communication usually takes place over TCP/IP connections. The
default port is TCP 80
(<http://www.iana.org/assignments/port-numbers>), but other ports can
be used. This does not preclude HTTP from being implemented on top
of any other protocol on the Internet, or on other networks. HTTP
only presumes a reliable transport; any protocol that provides such
guarantees can be used; the mapping of the HTTP/1.1 request and
response structures onto the transport data units of the protocol in
question is outside the scope of this specification.
In HTTP/1.0, most implementations used a new connection for each
request/response exchange. In HTTP/1.1, a connection might be used
for one or more request/response exchanges, although connections
might be closed for a variety of reasons (see Section 7.1).
2.5. HTTP Version
HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
of the protocol. The protocol versioning policy is intended to allow
the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features
obtained via that communication. No change is made to the version
number for the addition of message components which do not affect
communication behavior or which only add to extensible field values.
The <minor> number is incremented when the changes made to the
protocol add features which do not change the general message parsing
Fielding, et al. Expires February 5, 2011 [Page 14]
Internet-Draft HTTP/1.1, Part 1 August 2010
algorithm, but which might add to the message semantics and imply
additional capabilities of the sender. The <major> number is
incremented when the format of a message within the protocol is
changed. See [RFC2145] for a fuller explanation.
The version of an HTTP message is indicated by an HTTP-Version field
in the first line of the message. HTTP-Version is case-sensitive.
HTTP-Version = HTTP-Prot-Name "/" 1*DIGIT "." 1*DIGIT
HTTP-Prot-Name = %x48.54.54.50 ; "HTTP", case-sensitive
Note that the major and minor numbers MUST be treated as separate
integers and that each MAY be incremented higher than a single digit.
Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is
lower than HTTP/12.3. Leading zeros MUST be ignored by recipients
and MUST NOT be sent.
An application that sends a request or response message that includes
HTTP-Version of "HTTP/1.1" MUST be at least conditionally compliant
with this specification. Applications that are at least
conditionally compliant with this specification SHOULD use an HTTP-
Version of "HTTP/1.1" in their messages, and MUST do so for any
message that is not compatible with HTTP/1.0. For more details on
when to send specific HTTP-Version values, see [RFC2145].
The HTTP version of an application is the highest HTTP version for
which the application is at least conditionally compliant.
Proxy and gateway applications need to be careful when forwarding
messages in protocol versions different from that of the application.
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MUST NOT send a message with a version
indicator which is greater than its actual version. If a higher
version request is received, the proxy/gateway MUST either downgrade
the request version, or respond with an error, or switch to tunnel
behavior.
Due to interoperability problems with HTTP/1.0 proxies discovered
since the publication of [RFC2068], caching proxies MUST, gateways
MAY, and tunnels MUST NOT upgrade the request to the highest version
they support. The proxy/gateway's response to that request MUST be
in the same major version as the request.
Note: Converting between versions of HTTP might involve
modification of header fields required or forbidden by the
versions involved.
Fielding, et al. Expires February 5, 2011 [Page 15]
Internet-Draft HTTP/1.1, Part 1 August 2010
2.6. Uniform Resource Identifiers
Uniform Resource Identifiers (URIs) [RFC3986] are used throughout
HTTP as the means for identifying resources. URI references are used
to target requests, indicate redirects, and define relationships.
HTTP does not limit what a resource might be; it merely defines an
interface that can be used to interact with a resource via HTTP.
More information on the scope of URIs and resources can be found in
[RFC3986].
This specification adopts the definitions of "URI-reference",
"absolute-URI", "relative-part", "port", "host", "path-abempty",
"path-absolute", "query", and "authority" from [RFC3986]. In
addition, we define a partial-URI rule for protocol elements that
allow a relative URI without a fragment.
URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>
absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3>
relative-part = <relative-part, defined in [RFC3986], Section 4.2>
authority = <authority, defined in [RFC3986], Section 3.2>
path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>
path-absolute = <path-absolute, defined in [RFC3986], Section 3.3>
port = <port, defined in [RFC3986], Section 3.2.3>
query = <query, defined in [RFC3986], Section 3.4>
uri-host = <host, defined in [RFC3986], Section 3.2.2>
partial-URI = relative-part [ "?" query ]
Each protocol element in HTTP that allows a URI reference will
indicate in its ABNF production whether the element allows only a URI
in absolute form (absolute-URI), any relative reference (relative-
ref), or some other subset of the URI-reference grammar. Unless
otherwise indicated, URI references are parsed relative to the
request target (the default base URI for both the request and its
corresponding response).
2.6.1. http URI scheme
The "http" URI scheme is hereby defined for the purpose of minting
identifiers according to their association with the hierarchical
namespace governed by a potential HTTP origin server listening for
TCP connections on a given port. The HTTP server is identified via
the generic syntax's authority component, which includes a host
identifier and optional TCP port, and the remainder of the URI is
considered to be identifying data corresponding to a resource for
which that server might provide an HTTP interface.
http-URI = "http:" "//" authority path-abempty [ "?" query ]
Fielding, et al. Expires February 5, 2011 [Page 16]
Internet-Draft HTTP/1.1, Part 1 August 2010
The host identifier within an authority component is defined in
[RFC3986], Section 3.2.2. If host is provided as an IP literal or
IPv4 address, then the HTTP server is any listener on the indicated
TCP port at that IP address. If host is a registered name, then that
name is considered an indirect identifier and the recipient might use
a name resolution service, such as DNS, to find the address of a
listener for that host. The host MUST NOT be empty; if an "http" URI
is received with an empty host, then it MUST be rejected as invalid.
If the port subcomponent is empty or not given, then TCP port 80 is
assumed (the default reserved port for WWW services).
Regardless of the form of host identifier, access to that host is not
implied by the mere presence of its name or address. The host might
or might not exist and, even when it does exist, might or might not
be running an HTTP server or listening to the indicated port. The
"http" URI scheme makes use of the delegated nature of Internet names
and addresses to establish a naming authority (whatever entity has
the ability to place an HTTP server at that Internet name or address)
and allows that authority to determine which names are valid and how
they might be used.
When an "http" URI is used within a context that calls for access to
the indicated resource, a client MAY attempt access by resolving the
host to an IP address, establishing a TCP connection to that address
on the indicated port, and sending an HTTP request message to the
server containing the URI's identifying data as described in
Section 4. If the server responds to that request with a non-interim
HTTP response message, as described in Section 5, then that response
is considered an authoritative answer to the client's request.
Although HTTP is independent of the transport protocol, the "http"
scheme is specific to TCP-based services because the name delegation
process depends on TCP for establishing authority. An HTTP service
based on some other underlying connection protocol would presumably
be identified using a different URI scheme, just as the "https"
scheme (below) is used for servers that require an SSL/TLS transport
layer on a connection. Other protocols might also be used to provide
access to "http" identified resources --- it is only the
authoritative interface used for mapping the namespace that is
specific to TCP.
The URI generic syntax for authority also includes a deprecated
userinfo subcomponent ([RFC3986], Section 3.2.1) for including user
authentication information in the URI. The userinfo subcomponent
(and its "@" delimiter) MUST NOT be used in an "http" URI. URI
reference recipients SHOULD parse for the existence of userinfo and
treat its presence as an error, likely indicating that the deprecated
subcomponent is being used to obscure the authority for the sake of
Fielding, et al. Expires February 5, 2011 [Page 17]
Internet-Draft HTTP/1.1, Part 1 August 2010
phishing attacks.
2.6.2. https URI scheme
The "https" URI scheme is hereby defined for the purpose of minting
identifiers according to their association with the hierarchical
namespace governed by a potential HTTP origin server listening for
SSL/TLS-secured connections on a given TCP port.
All of the requirements listed above for the "http" scheme are also
requirements for the "https" scheme, except that a default TCP port
of 443 is assumed if the port subcomponent is empty or not given, and
the TCP connection MUST be secured for privacy through the use of
strong encryption prior to sending the first HTTP request.
https-URI = "https:" "//" authority path-abempty [ "?" query ]
Unlike the "http" scheme, responses to "https" identified requests
are never "public" and thus are ineligible for shared caching. Their
default is "private" and might be further constrained via use of the
Cache-Control header field.
Resources made available via the "https" scheme have no shared
identity with the "http" scheme even if their resource identifiers
only differ by the single "s" in the scheme name. They are different
services governed by different authorities. However, some extensions
to HTTP that apply to entire host domains, such as the Cookie
protocol, do allow one service to effect communication with the other
services based on host domain matching.
The process for authoritative access to an "https" identified
resource is defined in [RFC2818].
2.6.3. http and https URI Normalization and Comparison
Since the "http" and "https" schemes conform to the URI generic
syntax, such URIs are normalized and compared according to the
algorithm defined in [RFC3986], Section 6, using the defaults
described above for each scheme.
If the port is equal to the default port for a scheme, the normal
form is to elide the port subcomponent. Likewise, an empty path
component is equivalent to an absolute path of "/", so the normal
form is to provide a path of "/" instead. The scheme and host are
case-insensitive and normally provided in lowercase; all other
components are compared in a case-sensitive manner. Characters other
than those in the "reserved" set are equivalent to their percent-
encoded octets (see [RFC3986], Section 2.1): the normal form is to
Fielding, et al. Expires February 5, 2011 [Page 18]
Internet-Draft HTTP/1.1, Part 1 August 2010
not encode them.
For example, the following three URIs are equivalent:
http://example.com:80/~smith/home.html
http://EXAMPLE.com/%7Esmith/home.html
http://EXAMPLE.com:/%7esmith/home.html
[[TODO-not-here: This paragraph does not belong here. --roy]] If
path-abempty is the empty string (i.e., there is no slash "/" path
separator following the authority), then the "http" URI MUST be given
as "/" when used as a request-target (Section 4.1.2). If a proxy
receives a host name which is not a fully qualified domain name, it
MAY add its domain to the host name it received. If a proxy receives
a fully qualified domain name, the proxy MUST NOT change the host
name.
3. HTTP Message
All HTTP/1.1 messages consist of a start-line followed by a sequence
of characters in a format similar to the Internet Message Format
[RFC5322]: zero or more header fields (collectively referred to as
the "headers" or the "header section"), an empty line indicating the
end of the header section, and an optional message-body.
An HTTP message can either be a request from client to server or a
response from server to client. Syntactically, the two types of
message differ only in the start-line, which is either a Request-Line
(for requests) or a Status-Line (for responses), and in the algorithm
for determining the length of the message-body (Section 3.3). In
theory, a client could receive requests and a server could receive
responses, distinguishing them by their different start-line formats,
but in practice servers are implemented to only expect a request (a
response is interpreted as an unknown or invalid request method) and
clients are implemented to only expect a response.
HTTP-message = start-line
*( header-field CRLF )
CRLF
[ message-body ]
start-line = Request-Line / Status-Line
Whitespace (WSP) MUST NOT be sent between the start-line and the
first header field. The presence of whitespace might be an attempt
to trick a noncompliant implementation of HTTP into ignoring that
field or processing the next line as a new request, either of which
might result in security issues when implementations within the
request chain interpret the same message differently. HTTP/1.1
Fielding, et al. Expires February 5, 2011 [Page 19]
Internet-Draft HTTP/1.1, Part 1 August 2010
servers MUST reject such a message with a 400 (Bad Request) response.
3.1. Message Parsing Robustness
In the interest of robustness, servers SHOULD ignore at least one
empty line received where a Request-Line is expected. In other
words, if the server is reading the protocol stream at the beginning
of a message and receives a CRLF first, it SHOULD ignore the CRLF.
Some old HTTP/1.0 client implementations generate an extra CRLF after
a POST request as a lame workaround for some early server
applications that failed to read message-body content that was not
terminated by a line-ending. An HTTP/1.1 client MUST NOT preface or
follow a request with an extra CRLF. If terminating the request
message-body with a line-ending is desired, then the client MUST
include the terminating CRLF octets as part of the message-body
length.
The normal procedure for parsing an HTTP message is to read the
start-line into a structure, read each header field into a hash table
by field name until the empty line, and then use the parsed data to
determine if a message-body is expected. If a message-body has been
indicated, then it is read as a stream until an amount of octets
equal to the message-body length is read or the connection is closed.
Care must be taken to parse an HTTP message as a sequence of octets
in an encoding that is a superset of US-ASCII. Attempting to parse
HTTP as a stream of Unicode characters in a character encoding like
UTF-16 might introduce security flaws due to the differing ways that
such parsers interpret invalid characters.
HTTP allows the set of defined header fields to be extended without
changing the protocol version (see Section 10.1). However, such
fields might not be recognized by a downstream recipient and might be
stripped by non-transparent intermediaries. Unrecognized header
fields MUST be forwarded by transparent proxies and SHOULD be ignored
by a recipient.
3.2. Header Fields
Each HTTP header field consists of a case-insensitive field name
followed by a colon (":"), optional whitespace, and the field value.
header-field = field-name ":" OWS [ field-value ] OWS
field-name = token
field-value = *( field-content / OWS )
field-content = *( WSP / VCHAR / obs-text )
No whitespace is allowed between the header field name and colon.
Fielding, et al. Expires February 5, 2011 [Page 20]
Internet-Draft HTTP/1.1, Part 1 August 2010
For security reasons, any request message received containing such
whitespace MUST be rejected with a response code of 400 (Bad
Request). A proxy MUST remove any such whitespace from a response
message before forwarding the message downstream.
A field value MAY be preceded by optional whitespace (OWS); a single
SP is preferred. The field value does not include any leading or
trailing white space: OWS occurring before the first non-whitespace
character of the field value or after the last non-whitespace
character of the field value is ignored and SHOULD be removed before
further processing (as this does not change the meaning of the header
field).
The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
header fields that contain control data first, such as Host on
requests and Date on responses, so that implementations can decide
when not to handle a message as early as possible. A server MUST
wait until the entire header section is received before interpreting
a request message, since later header fields might include
conditionals, authentication credentials, or deliberately misleading
duplicate header fields that would impact request processing.
Multiple header fields with the same field name MUST NOT be sent in a
message unless the entire field value for that header field is
defined as a comma-separated list [i.e., #(values)]. Multiple header
fields with the same field name can be combined into one "field-name:
field-value" pair, without changing the semantics of the message, by
appending each subsequent field value to the combined field value in
order, separated by a comma. The order in which header fields with
the same field name are received is therefore significant to the
interpretation of the combined field value; a proxy MUST NOT change
the order of these field values when forwarding a message.
Note: The "Set-Cookie" header as implemented in practice (as
opposed to how it is specified in [RFC2109]) can occur multiple
times, but does not use the list syntax, and thus cannot be
combined into a single line. (See Appendix A.2.3 of [Kri2001] for
details.) Also note that the Set-Cookie2 header specified in
[RFC2965] does not share this problem.
Historically, HTTP header field values could be extended over
multiple lines by preceding each extra line with at least one space
or horizontal tab character (line folding). This specification
deprecates such line folding except within the message/http media
type (Section 10.3.1). HTTP/1.1 senders MUST NOT produce messages
that include line folding (i.e., that contain any field-content that
matches the obs-fold rule) unless the message is intended for
Fielding, et al. Expires February 5, 2011 [Page 21]
Internet-Draft HTTP/1.1, Part 1 August 2010
packaging within the message/http media type. HTTP/1.1 recipients
SHOULD accept line folding and replace any embedded obs-fold
whitespace with a single SP prior to interpreting the field value or
forwarding the message downstream.
Historically, HTTP has allowed field content with text in the ISO-
8859-1 [ISO-8859-1] character encoding and supported other character
sets only through use of [RFC2047] encoding. In practice, most HTTP
header field values use only a subset of the US-ASCII character
encoding [USASCII]. Newly defined header fields SHOULD limit their
field values to US-ASCII characters. Recipients SHOULD treat other
(obs-text) octets in field content as opaque data.
Comments can be included in some HTTP header fields by surrounding
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition.
comment = "(" *( ctext / quoted-cpair / comment ) ")"
ctext = OWS / %x21-27 / %x2A-5B / %x5D-7E / obs-text
; OWS / <VCHAR except "(", ")", and "\"> / obs-text
The backslash character ("\") can be used as a single-character
quoting mechanism within comment constructs:
quoted-cpair = "\" ( WSP / VCHAR / obs-text )
Producers SHOULD NOT escape characters that do not require escaping
(i.e., other than the backslash character "\" and the parentheses "("
and ")").
3.3. Message Body
The message-body (if any) of an HTTP message is used to carry the
payload body associated with the request or response.
message-body = *OCTET
The message-body differs from the payload body only when a transfer-
coding has been applied, as indicated by the Transfer-Encoding header
field (Section 9.7). When one or more transfer-codings are applied
to a payload in order to form the message-body, the Transfer-Encoding
header field MUST contain the list of transfer-codings applied.
Transfer-Encoding is a property of the message, not of the payload,
and thus MAY be added or removed by any implementation along the
request/response chain under the constraints found in Section 6.2.
The rules for when a message-body is allowed in a message differ for
requests and responses.
Fielding, et al. Expires February 5, 2011 [Page 22]
Internet-Draft HTTP/1.1, Part 1 August 2010
The presence of a message-body in a request is signaled by the
inclusion of a Content-Length or Transfer-Encoding header field in
the request's header fields, even if the request method does not
define any use for a message-body. This allows the request message
framing algorithm to be independent of method semantics.
For response messages, whether or not a message-body is included with
a message is dependent on both the request method and the response
status code (Section 5.1.1). Responses to the HEAD request method
never include a message-body because the associated response header
fields (e.g., Transfer-Encoding, Content-Length, etc.) only indicate
what their values would have been if the method had been GET. All
1xx (Informational), 204 (No Content), and 304 (Not Modified)
responses MUST NOT include a message-body. All other responses do
include a message-body, although the body MAY be of zero length.
The length of the message-body is determined by one of the following
(in order of precedence):
1. Any response to a HEAD request and any response with a status
code of 100-199, 204, or 304 is always terminated by the first
empty line after the header fields, regardless of the header
fields present in the message, and thus cannot contain a message-
body.
2. If a Transfer-Encoding header field (Section 9.7) is present and
the "chunked" transfer-coding (Section 6.2) is the final
encoding, the message-body length is determined by reading and
decoding the chunked data until the transfer-coding indicates the
data is complete.
If a Transfer-Encoding header field is present in a response and
the "chunked" transfer-coding is not the final encoding, the
message-body length is determined by reading the connection until
it is closed by the server. If a Transfer-Encoding header field
is present in a request and the "chunked" transfer-coding is not
the final encoding, the message-body length cannot be determined
reliably; the server MUST respond with the 400 (Bad Request)
status code and then close the connection.
If a message is received with both a Transfer-Encoding header
field and a Content-Length header field, the Transfer-Encoding
overrides the Content-Length. Such a message might indicate an
attempt to perform request or response smuggling (bypass of
security-related checks on message routing or content) and thus
ought to be handled as an error. The provided Content-Length
MUST be removed, prior to forwarding the message downstream, or
replaced with the real message-body length after the transfer-
Fielding, et al. Expires February 5, 2011 [Page 23]
Internet-Draft HTTP/1.1, Part 1 August 2010
coding is decoded.
3. If a message is received without Transfer-Encoding and with
either multiple Content-Length header fields or a single Content-
Length header field with an invalid value, then the message
framing is invalid and MUST be treated as an error to prevent
request or response smuggling. If this is a request message, the
server MUST respond with a 400 (Bad Request) status code and then
close the connection. If this is a response message received by
a proxy or gateway, the proxy or gateway MUST discard the
received response, send a 502 (Bad Gateway) status code as its
downstream response, and then close the connection. If this is a
response message received by a user-agent, the message-body
length is determined by reading the connection until it is
closed; an error SHOULD be indicated to the user.
4. If a valid Content-Length header field (Section 9.2) is present
without Transfer-Encoding, its decimal value defines the message-
body length in octets. If the actual number of octets sent in
the message is less than the indicated Content-Length, the
recipient MUST consider the message to be incomplete and treat
the connection as no longer usable. If the actual number of
octets sent in the message is more than the indicated Content-
Length, the recipient MUST only process the message-body up to
the field value's number of octets; the remainder of the message
MUST either be discarded or treated as the next message in a
pipeline. For the sake of robustness, a user-agent MAY attempt
to detect and correct such an error in message framing if it is
parsing the response to the last request on on a connection and
the connection has been closed by the server.
5. If this is a request message and none of the above are true, then
the message-body length is zero (no message-body is present).
6. Otherwise, this is a response message without a declared message-
body length, so the message-body length is determined by the
number of octets received prior to the server closing the
connection.
Since there is no way to distinguish a successfully completed, close-
delimited message from a partially-received message interrupted by
network failure, implementations SHOULD use encoding or length-
delimited messages whenever possible. The close-delimiting feature
exists primarily for backwards compatibility with HTTP/1.0.
A server MAY reject a request that contains a message-body but not a
Content-Length by responding with 411 (Length Required).
Fielding, et al. Expires February 5, 2011 [Page 24]
Internet-Draft HTTP/1.1, Part 1 August 2010
Unless a transfer-coding other than "chunked" has been applied, a
client that sends a request containing a message-body SHOULD use a
valid Content-Length header field if the message-body length is known
in advance, rather than the "chunked" encoding, since some existing
services respond to "chunked" with a 411 (Length Required) status
code even though they understand the chunked encoding. This is
typically because such services are implemented via a gateway that
requires a content-length in advance of being called and the server
is unable or unwilling to buffer the entire request before
processing.
A client that sends a request containing a message-body MUST include
a valid Content-Length header field if it does not know the server
will handle HTTP/1.1 (or later) requests; such knowledge can be in
the form of specific user configuration or by remembering the version
of a prior received response.
Request messages that are prematurely terminated, possibly due to a
cancelled connection or a server-imposed time-out exception, MUST
result in closure of the connection; sending an HTTP/1.1 error
response prior to closing the connection is OPTIONAL. Response
messages that are prematurely terminated, usually by closure of the
connection prior to receiving the expected number of octets or by
failure to decode a transfer-encoded message-body, MUST be recorded
as incomplete. A user agent MUST NOT render an incomplete response
message-body as if it were complete (i.e., some indication must be
given to the user that an error occurred). Cache requirements for
incomplete responses are defined in Section 2.1.1 of [Part6].
A server MUST read the entire request message-body or close the
connection after sending its response, since otherwise the remaining
data on a persistent connection would be misinterpreted as the next
request. Likewise, a client MUST read the entire response message-
body if it intends to reuse the same connection for a subsequent
request. Pipelining multiple requests on a connection is described
in Section 7.1.2.2.
3.4. General Header Fields
There are a few header fields which have general applicability for
both request and response messages, but which do not apply to the
payload being transferred. These header fields apply only to the
message being transmitted.
Fielding, et al. Expires February 5, 2011 [Page 25]
Internet-Draft HTTP/1.1, Part 1 August 2010
general-header = Cache-Control ; [Part6], Section 3.2
/ Connection ; Section 9.1
/ Date ; Section 9.3
/ Pragma ; [Part6], Section 3.4
/ Trailer ; Section 9.6
/ Transfer-Encoding ; Section 9.7
/ Upgrade ; Section 9.8
/ Via ; Section 9.9
/ Warning ; [Part6], Section 3.6
/ MIME-Version ; [Part3], Appendix A.1
General-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields might be given the semantics of general
header fields if all parties in the communication recognize them to
be general-header fields.
4. Request
A request message from a client to a server includes, within the
first line of that message, the method to be applied to the resource,
the identifier of the resource, and the protocol version in use.
Request = Request-Line ; Section 4.1
*( header-field CRLF ) ; Section 3.2
CRLF
[ message-body ] ; Section 3.3
4.1. Request-Line
The Request-Line begins with a method token, followed by the request-
target and the protocol version, and ending with CRLF. The elements
are separated by SP characters. No CR or LF is allowed except in the
final CRLF sequence.
Request-Line = Method SP request-target SP HTTP-Version CRLF
4.1.1. Method
The Method token indicates the method to be performed on the resource
identified by the request-target. The method is case-sensitive.
Method = token
Fielding, et al. Expires February 5, 2011 [Page 26]
Internet-Draft HTTP/1.1, Part 1 August 2010
4.1.2. request-target
The request-target identifies the resource upon which to apply the
request.
request-target = "*"
/ absolute-URI
/ ( path-absolute [ "?" query ] )
/ authority
The four options for request-target are dependent on the nature of
the request.
The asterisk "*" means that the request does not apply to a
particular resource, but to the server itself, and is only allowed
when the method used does not necessarily apply to a resource. One
example would be
OPTIONS * HTTP/1.1
The absolute-URI form is REQUIRED when the request is being made to a
proxy. The proxy is requested to forward the request or service it
from a valid cache, and return the response. Note that the proxy MAY
forward the request on to another proxy or directly to the server
specified by the absolute-URI. In order to avoid request loops, a
proxy MUST be able to recognize all of its server names, including
any aliases, local variations, and the numeric IP address. An
example Request-Line would be:
GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1
To allow for transition to absolute-URIs in all requests in future
versions of HTTP, all HTTP/1.1 servers MUST accept the absolute-URI
form in requests, even though HTTP/1.1 clients will only generate
them in requests to proxies.
The authority form is only used by the CONNECT method (Section 7.9 of
[Part2]).
The most common form of request-target is that used to identify a
resource on an origin server or gateway. In this case the absolute
path of the URI MUST be transmitted (see Section 2.6.1, path-
absolute) as the request-target, and the network location of the URI
(authority) MUST be transmitted in a Host header field. For example,
a client wishing to retrieve the resource above directly from the
origin server would create a TCP connection to port 80 of the host
"www.example.org" and send the lines:
Fielding, et al. Expires February 5, 2011 [Page 27]
Internet-Draft HTTP/1.1, Part 1 August 2010
GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.example.org
followed by the remainder of the Request. Note that the absolute
path cannot be empty; if none is present in the original URI, it MUST
be given as "/" (the server root).
If a proxy receives a request without any path in the request-target
and the method specified is capable of supporting the asterisk form
of request-target, then the last proxy on the request chain MUST
forward the request with "*" as the final request-target.
For example, the request
OPTIONS http://www.example.org:8001 HTTP/1.1
would be forwarded by the proxy as
OPTIONS * HTTP/1.1
Host: www.example.org:8001
after connecting to port 8001 of host "www.example.org".
The request-target is transmitted in the format specified in
Section 2.6.1. If the request-target is percent-encoded ([RFC3986],
Section 2.1), the origin server MUST decode the request-target in
order to properly interpret the request. Servers SHOULD respond to
invalid request-targets with an appropriate status code.
A transparent proxy MUST NOT rewrite the "path-absolute" part of the
received request-target when forwarding it to the next inbound
server, except as noted above to replace a null path-absolute with
"/" or "*".
Note: The "no rewrite" rule prevents the proxy from changing the
meaning of the request when the origin server is improperly using
a non-reserved URI character for a reserved purpose. Implementors
need to be aware that some pre-HTTP/1.1 proxies have been known to
rewrite the request-target.
HTTP does not place a pre-defined limit on the length of a request-
target. A server MUST be prepared to receive URIs of unbounded
length and respond with the 414 (URI Too Long) status code if the
received request-target would be longer than the server wishes to
handle (see Section 8.4.15 of [Part2]).
Various ad-hoc limitations on request-target length are found in
practice. It is RECOMMENDED that all HTTP senders and recipients
Fielding, et al. Expires February 5, 2011 [Page 28]
Internet-Draft HTTP/1.1, Part 1 August 2010
support request-target lengths of 8000 or more octets.
Note: Fragments ([RFC3986], Section 3.5) are not part of the
request-target and thus will not be transmitted in an HTTP
request.
4.2. The Resource Identified by a Request
The exact resource identified by an Internet request is determined by
examining both the request-target and the Host header field.
An origin server that does not allow resources to differ by the
requested host MAY ignore the Host header field value when
determining the resource identified by an HTTP/1.1 request. (But see
Appendix B.1.1 for other requirements on Host support in HTTP/1.1.)
An origin server that does differentiate resources based on the host
requested (sometimes referred to as virtual hosts or vanity host
names) MUST use the following rules for determining the requested
resource on an HTTP/1.1 request:
1. If request-target is an absolute-URI, the host is part of the
request-target. Any Host header field value in the request MUST
be ignored.
2. If the request-target is not an absolute-URI, and the request
includes a Host header field, the host is determined by the Host
header field value.
3. If the host as determined by rule 1 or 2 is not a valid host on
the server, the response MUST be a 400 (Bad Request) error
message.
Recipients of an HTTP/1.0 request that lacks a Host header field MAY
attempt to use heuristics (e.g., examination of the URI path for
something unique to a particular host) in order to determine what
exact resource is being requested.
4.3. Effective Request URI
HTTP requests often do not carry the absolute URI ([RFC3986], Section
4.3) for the target resource; instead, the URI needs to be inferred
from the request-target, Host header field, and connection context.
The result of this process is called the "effective request URI".
The "target resource" is the resource identified by the effective
request URI.
If the request-target is an absolute-URI, then the effective request
Fielding, et al. Expires February 5, 2011 [Page 29]
Internet-Draft HTTP/1.1, Part 1 August 2010
URI is the request-target.
If the request-target uses the path-absolute (plus optional query)
syntax or if it is just the asterisk "*", then the effective request
URI is constructed by concatenating
o the scheme name: "http" if the request was received over an
insecure TCP connection, or "https" when received over a SSL/
TLS-secured TCP connection,
o the character sequence "://",
o the authority component, as specified in the Host header
(Section 9.4) and determined by the rules in Section 4.2,
[[effrequri-nohost: Do we need to include the handling of missing
hosts in HTTP/1.0 messages, as described in Section 4.2? -- See
<http://tools.ietf.org/wg/httpbis/trac/ticket/221> --jre]] and
o the request-target obtained from the Request-Line, unless the
request-target is just the asterisk "*".
Otherwise, when request-target uses the authority form, the effective
Request URI is undefined.
Example 1: the effective request URI for the message
GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.example.org:8080
(received over an insecure TCP connection) is "http", plus "://",
plus the authority component "www.example.org:8080", plus the
request-target "/pub/WWW/TheProject.html", thus
"http://www.example.org:8080/pub/WWW/TheProject.html".
Example 2: the effective request URI for the message
GET * HTTP/1.1
Host: www.example.org
(received over an SSL/TLS secured TCP connection) is "https", plus
"://", plus the authority component "www.example.org", thus
"https://www.example.org".
Effective request URIs are compared using the rules described in
Section 2.6.3, except that empty path components MUST NOT be treated
as equivalent to an absolute path of "/".
Fielding, et al. Expires February 5, 2011 [Page 30]
Internet-Draft HTTP/1.1, Part 1 August 2010
5. Response
After receiving and interpreting a request message, a server responds
with an HTTP response message.
Response = Status-Line ; Section 5.1
*( header-field CRLF ) ; Section 3.2
CRLF
[ message-body ] ; Section 3.3
5.1. Status-Line
The first line of a Response message is the Status-Line, consisting
of the protocol version followed by a numeric status code and its
associated textual phrase, with each element separated by SP
characters. No CR or LF is allowed except in the final CRLF
sequence.
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
5.1.1. Status Code and Reason Phrase
The Status-Code element is a 3-digit integer result code of the
attempt to understand and satisfy the request. These codes are fully
defined in Section 8 of [Part2]. The Reason Phrase exists for the
sole purpose of providing a textual description associated with the
numeric status code, out of deference to earlier Internet application
protocols that were more frequently used with interactive text
clients. A client SHOULD ignore the content of the Reason Phrase.
The first digit of the Status-Code defines the class of response.
The last two digits do not have any categorization role. There are 5
values for the first digit:
o 1xx: Informational - Request received, continuing process
o 2xx: Success - The action was successfully received, understood,
and accepted
o 3xx: Redirection - Further action must be taken in order to
complete the request
o 4xx: Client Error - The request contains bad syntax or cannot be
fulfilled
o 5xx: Server Error - The server failed to fulfill an apparently
valid request
Fielding, et al. Expires February 5, 2011 [Page 31]
Internet-Draft HTTP/1.1, Part 1 August 2010
Status-Code = 3DIGIT
Reason-Phrase = *( WSP / VCHAR / obs-text )
6. Protocol Parameters
6.1. Date/Time Formats: Full Date
HTTP applications have historically allowed three different formats
for date/time stamps. However, the preferred format is a fixed-
length subset of that defined by [RFC1123]:
Sun, 06 Nov 1994 08:49:37 GMT ; RFC 1123
The other formats are described here only for compatibility with
obsolete implementations.
Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
HTTP/1.1 clients and servers that parse a date value MUST accept all
three formats (for compatibility with HTTP/1.0), though they MUST
only generate the RFC 1123 format for representing HTTP-date values
in header fields. See Appendix A for further information.
All HTTP date/time stamps MUST be represented in Greenwich Mean Time
(GMT), without exception. For the purposes of HTTP, GMT is exactly
equal to UTC (Coordinated Universal Time). This is indicated in the
first two formats by the inclusion of "GMT" as the three-letter
abbreviation for time zone, and MUST be assumed when reading the
asctime format. HTTP-date is case sensitive and MUST NOT include
additional whitespace beyond that specifically included as SP in the
grammar.
HTTP-date = rfc1123-date / obs-date
Preferred format:
Fielding, et al. Expires February 5, 2011 [Page 32]
Internet-Draft HTTP/1.1, Part 1 August 2010
rfc1123-date = day-name "," SP date1 SP time-of-day SP GMT
day-name = %x4D.6F.6E ; "Mon", case-sensitive
/ %x54.75.65 ; "Tue", case-sensitive
/ %x57.65.64 ; "Wed", case-sensitive
/ %x54.68.75 ; "Thu", case-sensitive
/ %x46.72.69 ; "Fri", case-sensitive
/ %x53.61.74 ; "Sat", case-sensitive
/ %x53.75.6E ; "Sun", case-sensitive
date1 = day SP month SP year
; e.g., 02 Jun 1982
day = 2DIGIT
month = %x4A.61.6E ; "Jan", case-sensitive
/ %x46.65.62 ; "Feb", case-sensitive
/ %x4D.61.72 ; "Mar", case-sensitive
/ %x41.70.72 ; "Apr", case-sensitive
/ %x4D.61.79 ; "May", case-sensitive
/ %x4A.75.6E ; "Jun", case-sensitive
/ %x4A.75.6C ; "Jul", case-sensitive
/ %x41.75.67 ; "Aug", case-sensitive
/ %x53.65.70 ; "Sep", case-sensitive
/ %x4F.63.74 ; "Oct", case-sensitive
/ %x4E.6F.76 ; "Nov", case-sensitive
/ %x44.65.63 ; "Dec", case-sensitive
year = 4DIGIT
GMT = %x47.4D.54 ; "GMT", case-sensitive
time-of-day = hour ":" minute ":" second
; 00:00:00 - 23:59:59
hour = 2DIGIT
minute = 2DIGIT
second = 2DIGIT
The semantics of day-name, day, month, year, and time-of-day are the
same as those defined for the RFC 5322 constructs with the
corresponding name ([RFC5322], Section 3.3).
Obsolete formats:
obs-date = rfc850-date / asctime-date
Fielding, et al. Expires February 5, 2011 [Page 33]
Internet-Draft HTTP/1.1, Part 1 August 2010
rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
date2 = day "-" month "-" 2DIGIT
; day-month-year (e.g., 02-Jun-82)
day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive
/ %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive
/ %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
/ %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive
/ %x46.72.69.64.61.79 ; "Friday", case-sensitive
/ %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive
/ %x53.75.6E.64.61.79 ; "Sunday", case-sensitive
asctime-date = day-name SP date3 SP time-of-day SP year
date3 = month SP ( 2DIGIT / ( SP 1DIGIT ))
; month day (e.g., Jun 2)
Note: Recipients of date values are encouraged to be robust in
accepting date values that might have been sent by non-HTTP
applications, as is sometimes the case when retrieving or posting
messages via proxies/gateways to SMTP or NNTP.
Note: HTTP requirements for the date/time stamp format apply only
to their usage within the protocol stream. Clients and servers
are not required to use these formats for user presentation,
request logging, etc.
6.2. Transfer Codings
Transfer-coding values are used to indicate an encoding
transformation that has been, can be, or might need to be applied to
a payload body in order to ensure "safe transport" through the
network. This differs from a content coding in that the transfer-
coding is a property of the message rather than a property of the
representation that is being transferred.
transfer-coding = "chunked" ; Section 6.2.1
/ "compress" ; Section 6.2.2.1
/ "deflate" ; Section 6.2.2.2
/ "gzip" ; Section 6.2.2.3
/ transfer-extension
transfer-extension = token *( OWS ";" OWS transfer-parameter )
Parameters are in the form of attribute/value pairs.
transfer-parameter = attribute BWS "=" BWS value
attribute = token
value = word
Fielding, et al. Expires February 5, 2011 [Page 34]
Internet-Draft HTTP/1.1, Part 1 August 2010
All transfer-coding values are case-insensitive. HTTP/1.1 uses
transfer-coding values in the TE header field (Section 9.5) and in
the Transfer-Encoding header field (Section 9.7).
Transfer-codings are analogous to the Content-Transfer-Encoding
values of MIME, which were designed to enable safe transport of
binary data over a 7-bit transport service ([RFC2045], Section 6).
However, safe transport has a different focus for an 8bit-clean
transfer protocol. In HTTP, the only unsafe characteristic of
message-bodies is the difficulty in determining the exact message
body length (Section 3.3), or the desire to encrypt data over a
shared transport.
A server that receives a request message with a transfer-coding it
does not understand SHOULD respond with 501 (Not Implemented) and
then close the connection. A server MUST NOT send transfer-codings
to an HTTP/1.0 client.
6.2.1. Chunked Transfer Coding
The chunked encoding modifies the body of a message in order to
transfer it as a series of chunks, each with its own size indicator,
followed by an OPTIONAL trailer containing header fields. This
allows dynamically produced content to be transferred along with the
information necessary for the recipient to verify that it has
received the full message.
Chunked-Body = *chunk
last-chunk
trailer-part
CRLF
chunk = chunk-size *WSP [ chunk-ext ] CRLF
chunk-data CRLF
chunk-size = 1*HEXDIG
last-chunk = 1*("0") *WSP [ chunk-ext ] CRLF
chunk-ext = *( ";" *WSP chunk-ext-name
[ "=" chunk-ext-val ] *WSP )
chunk-ext-name = token
chunk-ext-val = token / quoted-str-nf
chunk-data = 1*OCTET ; a sequence of chunk-size octets
trailer-part = *( header-field CRLF )
quoted-str-nf = DQUOTE *( qdtext-nf / quoted-pair ) DQUOTE
; like quoted-string, but disallowing line folding
qdtext-nf = WSP / %x21 / %x23-5B / %x5D-7E / obs-text
; WSP / <VCHAR except DQUOTE and "\"> / obs-text
Fielding, et al. Expires February 5, 2011 [Page 35]
Internet-Draft HTTP/1.1, Part 1 August 2010
The chunk-size field is a string of hex digits indicating the size of
the chunk-data in octets. The chunked encoding is ended by any chunk
whose size is zero, followed by the trailer, which is terminated by
an empty line.
The trailer allows the sender to include additional HTTP header
fields at the end of the message. The Trailer header field can be
used to indicate which header fields are included in a trailer (see
Section 9.6).
A server using chunked transfer-coding in a response MUST NOT use the
trailer for any header fields unless at least one of the following is
true:
1. the request included a TE header field that indicates "trailers"
is acceptable in the transfer-coding of the response, as
described in Section 9.5; or,
2. the server is the origin server for the response, the trailer
fields consist entirely of optional metadata, and the recipient
could use the message (in a manner acceptable to the origin
server) without receiving this metadata. In other words, the
origin server is willing to accept the possibility that the
trailer fields might be silently discarded along the path to the
client.
This requirement prevents an interoperability failure when the
message is being received by an HTTP/1.1 (or later) proxy and
forwarded to an HTTP/1.0 recipient. It avoids a situation where
compliance with the protocol would have necessitated a possibly
infinite buffer on the proxy.
A process for decoding the "chunked" transfer-coding can be
represented in pseudo-code as:
Fielding, et al. Expires February 5, 2011 [Page 36]
Internet-Draft HTTP/1.1, Part 1 August 2010
length := 0
read chunk-size, chunk-ext (if any) and CRLF
while (chunk-size > 0) {
read chunk-data and CRLF
append chunk-data to decoded-body
length := length + chunk-size
read chunk-size and CRLF
}
read header-field
while (header-field not empty) {
append header-field to existing header fields
read header-field
}
Content-Length := length
Remove "chunked" from Transfer-Encoding
All HTTP/1.1 applications MUST be able to receive and decode the
"chunked" transfer-coding and MUST ignore chunk-ext extensions they
do not understand.
Since "chunked" is the only transfer-coding required to be understood
by HTTP/1.1 recipients, it plays a crucial role in delimiting
messages on a persistent connection. Whenever a transfer-coding is
applied to a payload body in a request, the final transfer-coding
applied MUST be "chunked". If a transfer-coding is applied to a
response payload body, then either the final transfer-coding applied
MUST be "chunked" or the message MUST be terminated by closing the
connection. When the "chunked" transfer-coding is used, it MUST be
the last transfer-coding applied to form the message-body. The
"chunked" transfer-coding MUST NOT be applied more than once in a
message-body.
6.2.2. Compression Codings
The codings defined below can be used to compress the payload of a
message.
Note: Use of program names for the identification of encoding
formats is not desirable and is discouraged for future encodings.
Their use here is representative of historical practice, not good
design.
Note: For compatibility with previous implementations of HTTP,
applications SHOULD consider "x-gzip" and "x-compress" to be
equivalent to "gzip" and "compress" respectively.
Fielding, et al. Expires February 5, 2011 [Page 37]
Internet-Draft HTTP/1.1, Part 1 August 2010
6.2.2.1. Compress Coding
The "compress" format is produced by the common UNIX file compression
program "compress". This format is an adaptive Lempel-Ziv-Welch
coding (LZW).
6.2.2.2. Deflate Coding
The "deflate" format is defined as the "deflate" compression
mechanism (described in [RFC1951]) used inside the "zlib" data format
([RFC1950]).
Note: Some incorrect implementations send the "deflate" compressed
data without the zlib wrapper.
6.2.2.3. Gzip Coding
The "gzip" format is produced by the file compression program "gzip"
(GNU zip), as described in [RFC1952]. This format is a Lempel-Ziv
coding (LZ77) with a 32 bit CRC.
6.2.3. Transfer Coding Registry
The HTTP Transfer Coding Registry defines the name space for the
transfer coding names.
Registrations MUST include the following fields:
o Name
o Description
o Pointer to specification text
Names of transfer codings MUST NOT overlap with names of content
codings (Section 2.2 of [Part3]), unless the encoding transformation
is identical (as it is the case for the compression codings defined
in Section 6.2.2).
Values to be added to this name space require a specification (see
"Specification Required" in Section 4.1 of [RFC5226]), and MUST
conform to the purpose of transfer coding defined in this section.
The registry itself is maintained at
<http://www.iana.org/assignments/http-parameters>.
Fielding, et al. Expires February 5, 2011 [Page 38]
Internet-Draft HTTP/1.1, Part 1 August 2010
6.3. Product Tokens
Product tokens are used to allow communicating applications to
identify themselves by software name and version. Most fields using
product tokens also allow sub-products which form a significant part
of the application to be listed, separated by whitespace. By
convention, the products are listed in order of their significance
for identifying the application.
product = token ["/" product-version]
product-version = token
Examples:
User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Server: Apache/0.8.4
Product tokens SHOULD be short and to the point. They MUST NOT be
used for advertising or other non-essential information. Although
any token character MAY appear in a product-version, this token
SHOULD only be used for a version identifier (i.e., successive
versions of the same product SHOULD only differ in the product-
version portion of the product value).
6.4. Quality Values
Both transfer codings (TE request header, Section 9.5) and content
negotiation (Section 5 of [Part3]) use short "floating point" numbers
to indicate the relative importance ("weight") of various negotiable
parameters. A weight is normalized to a real number in the range 0
through 1, where 0 is the minimum and 1 the maximum value. If a
parameter has a quality value of 0, then content with this parameter
is "not acceptable" for the client. HTTP/1.1 applications MUST NOT
generate more than three digits after the decimal point. User
configuration of these values SHOULD also be limited in this fashion.
qvalue = ( "0" [ "." 0*3DIGIT ] )
/ ( "1" [ "." 0*3("0") ] )
Note: "Quality values" is a misnomer, since these values merely
represent relative degradation in desired quality.
7. Connections
7.1. Persistent Connections
Fielding, et al. Expires February 5, 2011 [Page 39]
Internet-Draft HTTP/1.1, Part 1 August 2010
7.1.1. Purpose
Prior to persistent connections, a separate TCP connection was
established to fetch each URL, increasing the load on HTTP servers
and causing congestion on the Internet. The use of inline images and
other associated data often requires a client to make multiple
requests of the same server in a short amount of time. Analysis of
these performance problems and results from a prototype
implementation are available [Pad1995] [Spe]. Implementation
experience and measurements of actual HTTP/1.1 implementations show
good results [Nie1997]. Alternatives have also been explored, for
example, T/TCP [Tou1998].
Persistent HTTP connections have a number of advantages:
o By opening and closing fewer TCP connections, CPU time is saved in
routers and hosts (clients, servers, proxies, gateways, tunnels,
or caches), and memory used for TCP protocol control blocks can be
saved in hosts.
o HTTP requests and responses can be pipelined on a connection.
Pipelining allows a client to make multiple requests without
waiting for each response, allowing a single TCP connection to be
used much more efficiently, with much lower elapsed time.
o Network congestion is reduced by reducing the number of packets
caused by TCP opens, and by allowing TCP sufficient time to
determine the congestion state of the network.
o Latency on subsequent requests is reduced since there is no time
spent in TCP's connection opening handshake.
o HTTP can evolve more gracefully, since errors can be reported
without the penalty of closing the TCP connection. Clients using
future versions of HTTP might optimistically try a new feature,
but if communicating with an older server, retry with old
semantics after an error is reported.
HTTP implementations SHOULD implement persistent connections.
7.1.2. Overall Operation
A significant difference between HTTP/1.1 and earlier versions of
HTTP is that persistent connections are the default behavior of any
HTTP connection. That is, unless otherwise indicated, the client
SHOULD assume that the server will maintain a persistent connection,
even after error responses from the server.
Fielding, et al. Expires February 5, 2011 [Page 40]
Internet-Draft HTTP/1.1, Part 1 August 2010
Persistent connections provide a mechanism by which a client and a
server can signal the close of a TCP connection. This signaling
takes place using the Connection header field (Section 9.1). Once a
close has been signaled, the client MUST NOT send any more requests
on that connection.
7.1.2.1. Negotiation
An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to
maintain a persistent connection unless a Connection header including
the connection-token "close" was sent in the request. If the server
chooses to close the connection immediately after sending the
response, it SHOULD send a Connection header including the
connection-token "close".
An HTTP/1.1 client MAY expect a connection to remain open, but would
decide to keep it open based on whether the response from a server
contains a Connection header with the connection-token close. In
case the client does not want to maintain a connection for more than
that request, it SHOULD send a Connection header including the
connection-token close.
If either the client or the server sends the close token in the
Connection header, that request becomes the last one for the
connection.
Clients and servers SHOULD NOT assume that a persistent connection is
maintained for HTTP versions less than 1.1 unless it is explicitly
signaled. See Appendix B.2 for more information on backward
compatibility with HTTP/1.0 clients.
In order to remain persistent, all messages on the connection MUST
have a self-defined message length (i.e., one not defined by closure
of the connection), as described in Section 3.3.
7.1.2.2. Pipelining
A client that supports persistent connections MAY "pipeline" its
requests (i.e., send multiple requests without waiting for each
response). A server MUST send its responses to those requests in the
same order that the requests were received.
Clients which assume persistent connections and pipeline immediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attempt fails. If a client does
such a retry, it MUST NOT pipeline before it knows the connection is
persistent. Clients MUST also be prepared to resend their requests
if the server closes the connection before sending all of the
Fielding, et al. Expires February 5, 2011 [Page 41]
Internet-Draft HTTP/1.1, Part 1 August 2010
corresponding responses.
Clients SHOULD NOT pipeline requests using non-idempotent methods or
non-idempotent sequences of methods (see Section 7.1.2 of [Part2]).
Otherwise, a premature termination of the transport connection could
lead to indeterminate results. A client wishing to send a non-
idempotent request SHOULD wait to send that request until it has
received the response status line for the previous request.
7.1.3. Proxy Servers
It is especially important that proxies correctly implement the
properties of the Connection header field as specified in
Section 9.1.
The proxy server MUST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Each persistent connection applies to only one
transport link.
A proxy server MUST NOT establish a HTTP/1.1 persistent connection
with an HTTP/1.0 client (but see Section 19.7.1 of [RFC2068] for
information and discussion of the problems with the Keep-Alive header
implemented by many HTTP/1.0 clients).
7.1.3.1. End-to-end and Hop-by-hop Headers
For the purpose of defining the behavior of caches and non-caching
proxies, we divide HTTP headers into two categories:
o End-to-end headers, which are transmitted to the ultimate
recipient of a request or response. End-to-end headers in
responses MUST be stored as part of a cache entry and MUST be
transmitted in any response formed from a cache entry.
o Hop-by-hop headers, which are meaningful only for a single
transport-level connection, and are not stored by caches or
forwarded by proxies.
The following HTTP/1.1 headers are hop-by-hop headers:
o Connection
o Keep-Alive
o Proxy-Authenticate
Fielding, et al. Expires February 5, 2011 [Page 42]
Internet-Draft HTTP/1.1, Part 1 August 2010
o Proxy-Authorization
o TE
o Trailer
o Transfer-Encoding
o Upgrade
All other headers defined by HTTP/1.1 are end-to-end headers.
Other hop-by-hop headers MUST be listed in a Connection header
(Section 9.1).
7.1.3.2. Non-modifiable Headers
Some features of HTTP/1.1, such as Digest Authentication, depend on
the value of certain end-to-end headers. A transparent proxy SHOULD
NOT modify an end-to-end header unless the definition of that header
requires or specifically allows that.
A transparent proxy MUST NOT modify any of the following fields in a
request or response, and it MUST NOT add any of these fields if not
already present:
o Content-Location
o Content-MD5
o ETag
o Last-Modified
A transparent proxy MUST NOT modify any of the following fields in a
response:
o Expires
but it MAY add any of these fields if not already present. If an
Expires header is added, it MUST be given a field-value identical to
that of the Date header in that response.
A proxy MUST NOT modify or add any of the following fields in a
message that contains the no-transform cache-control directive, or in
any request:
Fielding, et al. Expires February 5, 2011 [Page 43]
Internet-Draft HTTP/1.1, Part 1 August 2010
o Content-Encoding
o Content-Range
o Content-Type
A non-transparent proxy MAY modify or add these fields to a message
that does not include no-transform, but if it does so, it MUST add a
Warning 214 (Transformation applied) if one does not already appear
in the message (see Section 3.6 of [Part6]).
Warning: Unnecessary modification of end-to-end headers might
cause authentication failures if stronger authentication
mechanisms are introduced in later versions of HTTP. Such
authentication mechanisms MAY rely on the values of header fields
not listed here.
A transparent proxy MUST preserve the message payload ([Part3]),
though it MAY change the message-body through application or removal
of a transfer-coding (Section 6.2).
7.1.4. Practical Considerations
Servers will usually have some time-out value beyond which they will
no longer maintain an inactive connection. Proxy servers might make
this a higher value since it is likely that the client will be making
more connections through the same server. The use of persistent
connections places no requirements on the length (or existence) of
this time-out for either the client or the server.
When a client or server wishes to time-out it SHOULD issue a graceful
close on the transport connection. Clients and servers SHOULD both
constantly watch for the other side of the transport close, and
respond to it as appropriate. If a client or server does not detect
the other side's close promptly it could cause unnecessary resource
drain on the network.
A client, server, or proxy MAY close the transport connection at any
time. For example, a client might have started to send a new request
at the same time that the server has decided to close the "idle"
connection. From the server's point of view, the connection is being
closed while it was idle, but from the client's point of view, a
request is in progress.
This means that clients, servers, and proxies MUST be able to recover
from asynchronous close events. Client software SHOULD reopen the
transport connection and retransmit the aborted sequence of requests
without user interaction so long as the request sequence is
Fielding, et al. Expires February 5, 2011 [Page 44]
Internet-Draft HTTP/1.1, Part 1 August 2010
idempotent (see Section 7.1.2 of [Part2]). Non-idempotent methods or
sequences MUST NOT be automatically retried, although user agents MAY
offer a human operator the choice of retrying the request(s).
Confirmation by user-agent software with semantic understanding of
the application MAY substitute for user confirmation. The automatic
retry SHOULD NOT be repeated if the second sequence of requests
fails.
Servers SHOULD always respond to at least one request per connection,
if at all possible. Servers SHOULD NOT close a connection in the
middle of transmitting a response, unless a network or client failure
is suspected.
Clients (including proxies) SHOULD limit the number of simultaneous
connections that they maintain to a given server (including proxies).
Previous revisions of HTTP gave a specific number of connections as a
ceiling, but this was found to be impractical for many applications.
As a result, this specification does not mandate a particular maximum
number of connections, but instead encourages clients to be
conservative when opening multiple connections.
In particular, while using multiple connections avoids the "head-of-
line blocking" problem (whereby a request that takes significant
server-side processing and/or has a large payload can block
subsequent requests on the same connection), each connection used
consumes server resources (sometimes significantly), and furthermore
using multiple connections can cause undesirable side effects in
congested networks.
Note that servers might reject traffic that they deem abusive,
including an excessive number of connections from a client.
7.2. Message Transmission Requirements
7.2.1. Persistent Connections and Flow Control
HTTP/1.1 servers SHOULD maintain persistent connections and use TCP's
flow control mechanisms to resolve temporary overloads, rather than
terminating connections with the expectation that clients will retry.
The latter technique can exacerbate network congestion.
7.2.2. Monitoring Connections for Error Status Messages
An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
the network connection for an error status code while it is
transmitting the request. If the client sees an error status code,
it SHOULD immediately cease transmitting the body. If the body is
Fielding, et al. Expires February 5, 2011 [Page 45]
Internet-Draft HTTP/1.1, Part 1 August 2010
being sent using a "chunked" encoding (Section 6.2), a zero length
chunk and empty trailer MAY be used to prematurely mark the end of
the message. If the body was preceded by a Content-Length header,
the client MUST close the connection.
7.2.3. Use of the 100 (Continue) Status
The purpose of the 100 (Continue) status code (see Section 8.1.1 of
[Part2]) is to allow a client that is sending a request message with
a request body to determine if the origin server is willing to accept
the request (based on the request headers) before the client sends
the request body. In some cases, it might either be inappropriate or
highly inefficient for the client to send the body if the server will
reject the message without looking at the body.
Requirements for HTTP/1.1 clients:
o If a client will wait for a 100 (Continue) response before sending
the request body, it MUST send an Expect request-header field
(Section 9.2 of [Part2]) with the "100-continue" expectation.
o A client MUST NOT send an Expect request-header field (Section 9.2
of [Part2]) with the "100-continue" expectation if it does not
intend to send a request body.
Because of the presence of older implementations, the protocol allows
ambiguous situations in which a client might send "Expect: 100-
continue" without receiving either a 417 (Expectation Failed) or a
100 (Continue) status code. Therefore, when a client sends this
header field to an origin server (possibly via a proxy) from which it
has never seen a 100 (Continue) status code, the client SHOULD NOT
wait for an indefinite period before sending the request body.
Requirements for HTTP/1.1 origin servers:
o Upon receiving a request which includes an Expect request-header
field with the "100-continue" expectation, an origin server MUST
either respond with 100 (Continue) status code and continue to
read from the input stream, or respond with a final status code.
The origin server MUST NOT wait for the request body before
sending the 100 (Continue) response. If it responds with a final
status code, it MAY close the transport connection or it MAY
continue to read and discard the rest of the request. It MUST NOT
perform the requested method if it returns a final status code.
o An origin server SHOULD NOT send a 100 (Continue) response if the
request message does not include an Expect request-header field
with the "100-continue" expectation, and MUST NOT send a 100
Fielding, et al. Expires February 5, 2011 [Page 46]
Internet-Draft HTTP/1.1, Part 1 August 2010
(Continue) response if such a request comes from an HTTP/1.0 (or
earlier) client. There is an exception to this rule: for
compatibility with [RFC2068], a server MAY send a 100 (Continue)
status code in response to an HTTP/1.1 PUT or POST request that
does not include an Expect request-header field with the "100-
continue" expectation. This exception, the purpose of which is to
minimize any client processing delays associated with an
undeclared wait for 100 (Continue) status code, applies only to
HTTP/1.1 requests, and not to requests with any other HTTP-version
value.
o An origin server MAY omit a 100 (Continue) response if it has
already received some or all of the request body for the
corresponding request.
o An origin server that sends a 100 (Continue) response MUST
ultimately send a final status code, once the request body is
received and processed, unless it terminates the transport
connection prematurely.
o If an origin server receives a request that does not include an
Expect request-header field with the "100-continue" expectation,
the request includes a request body, and the server responds with
a final status code before reading the entire request body from
the transport connection, then the server SHOULD NOT close the
transport connection until it has read the entire request, or
until the client closes the connection. Otherwise, the client
might not reliably receive the response message. However, this
requirement is not be construed as preventing a server from
defending itself against denial-of-service attacks, or from badly
broken client implementations.
Requirements for HTTP/1.1 proxies:
o If a proxy receives a request that includes an Expect request-
header field with the "100-continue" expectation, and the proxy
either knows that the next-hop server complies with HTTP/1.1 or
higher, or does not know the HTTP version of the next-hop server,
it MUST forward the request, including the Expect header field.
o If the proxy knows that the version of the next-hop server is
HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST
respond with a 417 (Expectation Failed) status code.
o Proxies SHOULD maintain a cache recording the HTTP version numbers
received from recently-referenced next-hop servers.
Fielding, et al. Expires February 5, 2011 [Page 47]
Internet-Draft HTTP/1.1, Part 1 August 2010
o A proxy MUST NOT forward a 100 (Continue) response if the request
message was received from an HTTP/1.0 (or earlier) client and did
not include an Expect request-header field with the "100-continue"
expectation. This requirement overrides the general rule for
forwarding of 1xx responses (see Section 8.1 of [Part2]).
7.2.4. Client Behavior if Server Prematurely Closes Connection
If an HTTP/1.1 client sends a request which includes a request body,
but which does not include an Expect request-header field with the
"100-continue" expectation, and if the client is not directly
connected to an HTTP/1.1 origin server, and if the client sees the
connection close before receiving a status line from the server, the
client SHOULD retry the request. If the client does retry this
request, it MAY use the following "binary exponential backoff"
algorithm to be assured of obtaining a reliable response:
1. Initiate a new connection to the server
2. Transmit the request-headers
3. Initialize a variable R to the estimated round-trip time to the
server (e.g., based on the time it took to establish the
connection), or to a constant value of 5 seconds if the round-
trip time is not available.
4. Compute T = R * (2**N), where N is the number of previous retries
of this request.
5. Wait either for an error response from the server, or for T
seconds (whichever comes first)
6. If no error response is received, after T seconds transmit the
body of the request.
7. If client sees that the connection is closed prematurely, repeat
from step 1 until the request is accepted, an error response is
received, or the user becomes impatient and terminates the retry
process.
If at any point an error status code is received, the client
o SHOULD NOT continue and
o SHOULD close the connection if it has not completed sending the
request message.
Fielding, et al. Expires February 5, 2011 [Page 48]
Internet-Draft HTTP/1.1, Part 1 August 2010
8. Miscellaneous notes that might disappear
8.1. Scheme aliases considered harmful
[[TBD-aliases-harmful: describe why aliases like webcal are
harmful.]]
8.2. Use of HTTP for proxy communication
[[TBD-proxy-other: Configured to use HTTP to proxy HTTP or other
protocols.]]
8.3. Interception of HTTP for access control
[[TBD-intercept: Interception of HTTP traffic for initiating access
control.]]
8.4. Use of HTTP by other protocols
[[TBD-profiles: Profiles of HTTP defined by other protocol.
Extensions of HTTP like WebDAV.]]
8.5. Use of HTTP by media type specification
[[TBD-hypertext: Instructions on composing HTTP requests via
hypertext formats.]]
9. Header Field Definitions
This section defines the syntax and semantics of HTTP/1.1 header
fields related to message framing and transport protocols.
9.1. Connection
The "Connection" general-header field allows the sender to specify
options that are desired for that particular connection and MUST NOT
be communicated by proxies over further connections.
The Connection header's value has the following grammar:
Connection = "Connection" ":" OWS Connection-v
Connection-v = 1#connection-token
connection-token = token
HTTP/1.1 proxies MUST parse the Connection header field before a
message is forwarded and, for each connection-token in this field,
remove any header field(s) from the message with the same name as the
connection-token. Connection options are signaled by the presence of
Fielding, et al. Expires February 5, 2011 [Page 49]
Internet-Draft HTTP/1.1, Part 1 August 2010
a connection-token in the Connection header field, not by any
corresponding additional header field(s), since the additional header
field might not be sent if there are no parameters associated with
that connection option.
Message headers listed in the Connection header MUST NOT include end-
to-end headers, such as Cache-Control.
HTTP/1.1 defines the "close" connection option for the sender to
signal that the connection will be closed after completion of the
response. For example,
Connection: close
in either the request or the response header fields indicates that
the connection SHOULD NOT be considered "persistent" (Section 7.1)
after the current request/response is complete.
An HTTP/1.1 client that does not support persistent connections MUST
include the "close" connection option in every request message.
An HTTP/1.1 server that does not support persistent connections MUST
include the "close" connection option in every response message that
does not have a 1xx (Informational) status code.
A system receiving an HTTP/1.0 (or lower-version) message that
includes a Connection header MUST, for each connection-token in this
field, remove and ignore any header field(s) from the message with
the same name as the connection-token. This protects against
mistaken forwarding of such header fields by pre-HTTP/1.1 proxies.
See Appendix B.2.
9.2. Content-Length
The "Content-Length" header field indicates the size of the message-
body, in decimal number of octets, for any message other than a
response to the HEAD method or a response with a status code of 304.
In the case of responses to the HEAD method, it indicates the size of
the payload body (not including any potential transfer-coding) that
would have been sent had the request been a GET. In the case of the
304 (Not Modified) response, it indicates the size of the payload
body (not including any potential transfer-coding) that would have
been sent in a 200 (OK) response.
Content-Length = "Content-Length" ":" OWS 1*Content-Length-v
Content-Length-v = 1*DIGIT
An example is
Fielding, et al. Expires February 5, 2011 [Page 50]
Internet-Draft HTTP/1.1, Part 1 August 2010
Content-Length: 3495
Implementations SHOULD use this field to indicate the message-body
length when no transfer-coding is being applied and the payload's
body length can be determined prior to being transferred.
Section 3.3 describes how recipients determine the length of a
message-body.
Any Content-Length greater than or equal to zero is a valid value.
Note that the use of this field in HTTP is significantly different
from the corresponding definition in MIME, where it is an optional
field used within the "message/external-body" content-type.
9.3. Date
The "Date" general-header field represents the date and time at which
the message was originated, having the same semantics as the
Origination Date Field (orig-date) defined in Section 3.6.1 of
[RFC5322]. The field value is an HTTP-date, as described in
Section 6.1; it MUST be sent in rfc1123-date format.
Date = "Date" ":" OWS Date-v
Date-v = HTTP-date
An example is
Date: Tue, 15 Nov 1994 08:12:31 GMT
Origin servers MUST include a Date header field in all responses,
except in these cases:
1. If the response status code is 100 (Continue) or 101 (Switching
Protocols), the response MAY include a Date header field, at the
server's option.
2. If the response status code conveys a server error, e.g., 500
(Internal Server Error) or 503 (Service Unavailable), and it is
inconvenient or impossible to generate a valid Date.
3. If the server does not have a clock that can provide a reasonable
approximation of the current time, its responses MUST NOT include
a Date header field. In this case, the rules in Section 9.3.1
MUST be followed.
A received message that does not have a Date header field MUST be
assigned one by the recipient if the message will be cached by that
recipient or gatewayed via a protocol which requires a Date. An HTTP
Fielding, et al. Expires February 5, 2011 [Page 51]
Internet-Draft HTTP/1.1, Part 1 August 2010
implementation without a clock MUST NOT cache responses without
revalidating them on every use. An HTTP cache, especially a shared
cache, SHOULD use a mechanism, such as NTP [RFC1305], to synchronize
its clock with a reliable external standard.
Clients SHOULD only send a Date header field in messages that include
a payload, as is usually the case for PUT and POST requests, and even
then it is optional. A client without a clock MUST NOT send a Date
header field in a request.
The HTTP-date sent in a Date header SHOULD NOT represent a date and
time subsequent to the generation of the message. It SHOULD
represent the best available approximation of the date and time of
message generation, unless the implementation has no means of
generating a reasonably accurate date and time. In theory, the date
ought to represent the moment just before the payload is generated.
In practice, the date can be generated at any time during the message
origination without affecting its semantic value.
9.3.1. Clockless Origin Server Operation
Some origin server implementations might not have a clock available.
An origin server without a clock MUST NOT assign Expires or Last-
Modified values to a response, unless these values were associated
with the resource by a system or user with a reliable clock. It MAY
assign an Expires value that is known, at or before server
configuration time, to be in the past (this allows "pre-expiration"
of responses without storing separate Expires values for each
resource).
9.4. Host
The "Host" request-header field specifies the Internet host and port
number of the resource being requested, allowing the origin server or
gateway to differentiate between internally-ambiguous URLs, such as
the root "/" URL of a server for multiple host names on a single IP
address.
The Host field value MUST represent the naming authority of the
origin server or gateway given by the original URL obtained from the
user or referring resource (generally an http URI, as described in
Section 2.6.1).
Host = "Host" ":" OWS Host-v
Host-v = uri-host [ ":" port ] ; Section 2.6.1
A "host" without any trailing port information implies the default
port for the service requested (e.g., "80" for an HTTP URL). For
Fielding, et al. Expires February 5, 2011 [Page 52]
Internet-Draft HTTP/1.1, Part 1 August 2010
example, a request on the origin server for
<http://www.example.org/pub/WWW/> would properly include:
GET /pub/WWW/ HTTP/1.1
Host: www.example.org
A client MUST include a Host header field in all HTTP/1.1 request
messages. If the requested URI does not include an Internet host
name for the service being requested, then the Host header field MUST
be given with an empty value. An HTTP/1.1 proxy MUST ensure that any
request message it forwards does contain an appropriate Host header
field that identifies the service being requested by the proxy. All
Internet-based HTTP/1.1 servers MUST respond with a 400 (Bad Request)
status code to any HTTP/1.1 request message which lacks a Host header
field.
See Sections 4.2 and B.1.1 for other requirements relating to Host.
9.5. TE
The "TE" request-header field indicates what extension transfer-
codings it is willing to accept in the response, and whether or not
it is willing to accept trailer fields in a chunked transfer-coding.
Its value consists of the keyword "trailers" and/or a comma-separated
list of extension transfer-coding names with optional accept
parameters (as described in Section 6.2).
TE = "TE" ":" OWS TE-v
TE-v = #t-codings
t-codings = "trailers" / ( transfer-extension [ te-params ] )
te-params = OWS ";" OWS "q=" qvalue *( te-ext )
te-ext = OWS ";" OWS token [ "=" word ]
The presence of the keyword "trailers" indicates that the client is
willing to accept trailer fields in a chunked transfer-coding, as
defined in Section 6.2.1. This keyword is reserved for use with
transfer-coding values even though it does not itself represent a
transfer-coding.
Examples of its use are:
TE: deflate
TE:
TE: trailers, deflate;q=0.5
The TE header field only applies to the immediate connection.
Therefore, the keyword MUST be supplied within a Connection header
Fielding, et al. Expires February 5, 2011 [Page 53]
Internet-Draft HTTP/1.1, Part 1 August 2010
field (Section 9.1) whenever TE is present in an HTTP/1.1 message.
A server tests whether a transfer-coding is acceptable, according to
a TE field, using these rules:
1. The "chunked" transfer-coding is always acceptable. If the
keyword "trailers" is listed, the client indicates that it is
willing to accept trailer fields in the chunked response on
behalf of itself and any downstream clients. The implication is
that, if given, the client is stating that either all downstream
clients are willing to accept trailer fields in the forwarded
response, or that it will attempt to buffer the response on
behalf of downstream recipients.
Note: HTTP/1.1 does not define any means to limit the size of a
chunked response such that a client can be assured of buffering
the entire response.
2. If the transfer-coding being tested is one of the transfer-
codings listed in the TE field, then it is acceptable unless it
is accompanied by a qvalue of 0. (As defined in Section 6.4, a
qvalue of 0 means "not acceptable".)
3. If multiple transfer-codings are acceptable, then the acceptable
transfer-coding with the highest non-zero qvalue is preferred.
The "chunked" transfer-coding always has a qvalue of 1.
If the TE field-value is empty or if no TE field is present, the only
transfer-coding is "chunked". A message with no transfer-coding is
always acceptable.
9.6. Trailer
The "Trailer" general-header field indicates that the given set of
header fields is present in the trailer of a message encoded with
chunked transfer-coding.
Trailer = "Trailer" ":" OWS Trailer-v
Trailer-v = 1#field-name
An HTTP/1.1 message SHOULD include a Trailer header field in a
message using chunked transfer-coding with a non-empty trailer.
Doing so allows the recipient to know which header fields to expect
in the trailer.
If no Trailer header field is present, the trailer SHOULD NOT include
any header fields. See Section 6.2.1 for restrictions on the use of
trailer fields in a "chunked" transfer-coding.
Fielding, et al. Expires February 5, 2011 [Page 54]
Internet-Draft HTTP/1.1, Part 1 August 2010
Message header fields listed in the Trailer header field MUST NOT
include the following header fields:
o Transfer-Encoding
o Content-Length
o Trailer
9.7. Transfer-Encoding
The "Transfer-Encoding" general-header field indicates what transfer-
codings (if any) have been applied to the message body. It differs
from Content-Encoding (Section 2.2 of [Part3]) in that transfer-
codings are a property of the message (and therefore are removed by
intermediaries), whereas content-codings are not.
Transfer-Encoding = "Transfer-Encoding" ":" OWS
Transfer-Encoding-v
Transfer-Encoding-v = 1#transfer-coding
Transfer-codings are defined in Section 6.2. An example is:
Transfer-Encoding: chunked
If multiple encodings have been applied to a representation, the
transfer-codings MUST be listed in the order in which they were
applied. Additional information about the encoding parameters MAY be
provided by other header fields not defined by this specification.
Many older HTTP/1.0 applications do not understand the Transfer-
Encoding header.
9.8. Upgrade
The "Upgrade" general-header field allows the client to specify what
additional communication protocols it would like to use, if the
server chooses to switch protocols. Additionally, the server MUST
use the Upgrade header field within a 101 (Switching Protocols)
response to indicate which protocol(s) are being switched to.
Upgrade = "Upgrade" ":" OWS Upgrade-v
Upgrade-v = 1#product
For example,
Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11
Fielding, et al. Expires February 5, 2011 [Page 55]
Internet-Draft HTTP/1.1, Part 1 August 2010
The Upgrade header field is intended to provide a simple mechanism
for transition from HTTP/1.1 to some other, incompatible protocol.
It does so by allowing the client to advertise its desire to use
another protocol, such as a later version of HTTP with a higher major
version number, even though the current request has been made using
HTTP/1.1. This eases the difficult transition between incompatible
protocols by allowing the client to initiate a request in the more
commonly supported protocol while indicating to the server that it
would like to use a "better" protocol if available (where "better" is
determined by the server, possibly according to the nature of the
method and/or resource being requested).
The Upgrade header field only applies to switching application-layer
protocols upon the existing transport-layer connection. Upgrade
cannot be used to insist on a protocol change; its acceptance and use
by the server is optional. The capabilities and nature of the
application-layer communication after the protocol change is entirely
dependent upon the new protocol chosen, although the first action
after changing the protocol MUST be a response to the initial HTTP
request containing the Upgrade header field.
The Upgrade header field only applies to the immediate connection.
Therefore, the upgrade keyword MUST be supplied within a Connection
header field (Section 9.1) whenever Upgrade is present in an HTTP/1.1
message.
The Upgrade header field cannot be used to indicate a switch to a
protocol on a different connection. For that purpose, it is more
appropriate to use a 301, 302, 303, or 305 redirection response.
This specification only defines the protocol name "HTTP" for use by
the family of Hypertext Transfer Protocols, as defined by the HTTP
version rules of Section 2.5 and future updates to this
specification. Additional tokens can be registered with IANA using
the registration procedure defined below.
9.8.1. Upgrade Token Registry
The HTTP Upgrade Token Registry defines the name space for product
tokens used to identify protocols in the Upgrade header field. Each
registered token is associated with contact information and an
optional set of specifications that details how the connection will
be processed after it has been upgraded.
Registrations are allowed on a First Come First Served basis as
described in Section 4.1 of [RFC5226]. The specifications need not
be IETF documents or be subject to IESG review. Registrations are
subject to the following rules:
Fielding, et al. Expires February 5, 2011 [Page 56]
Internet-Draft HTTP/1.1, Part 1 August 2010
1. A token, once registered, stays registered forever.
2. The registration MUST name a responsible party for the
registration.
3. The registration MUST name a point of contact.
4. The registration MAY name a set of specifications associated with
that token. Such specifications need not be publicly available.
5. The responsible party MAY change the registration at any time.
The IANA will keep a record of all such changes, and make them
available upon request.
6. The responsible party for the first registration of a "product"
token MUST approve later registrations of a "version" token
together with that "product" token before they can be registered.
7. If absolutely required, the IESG MAY reassign the responsibility
for a token. This will normally only be used in the case when a
responsible party cannot be contacted.
9.9. Via
The "Via" general-header field MUST be used by gateways and proxies
to indicate the intermediate protocols and recipients between the
user agent and the server on requests, and between the origin server
and the client on responses. It is analogous to the "Received" field
defined in Section 3.6.7 of [RFC5322] and is intended to be used for
tracking message forwards, avoiding request loops, and identifying
the protocol capabilities of all senders along the request/response
chain.
Via = "Via" ":" OWS Via-v
Via-v = 1#( received-protocol RWS received-by
[ RWS comment ] )
received-protocol = [ protocol-name "/" ] protocol-version
protocol-name = token
protocol-version = token
received-by = ( uri-host [ ":" port ] ) / pseudonym
pseudonym = token
The received-protocol indicates the protocol version of the message
received by the server or client along each segment of the request/
response chain. The received-protocol version is appended to the Via
field value when the message is forwarded so that information about
the protocol capabilities of upstream applications remains visible to
all recipients.
Fielding, et al. Expires February 5, 2011 [Page 57]
Internet-Draft HTTP/1.1, Part 1 August 2010
The protocol-name is optional if and only if it would be "HTTP". The
received-by field is normally the host and optional port number of a
recipient server or client that subsequently forwarded the message.
However, if the real host is considered to be sensitive information,
it MAY be replaced by a pseudonym. If the port is not given, it MAY
be assumed to be the default port of the received-protocol.
Multiple Via field values represent each proxy or gateway that has
forwarded the message. Each recipient MUST append its information
such that the end result is ordered according to the sequence of
forwarding applications.
Comments MAY be used in the Via header field to identify the software
of the recipient proxy or gateway, analogous to the User-Agent and
Server header fields. However, all comments in the Via field are
optional and MAY be removed by any recipient prior to forwarding the
message.
For example, a request message could be sent from an HTTP/1.0 user
agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
forward the request to a public proxy at p.example.net, which
completes the request by forwarding it to the origin server at
www.example.com. The request received by www.example.com would then
have the following Via header field:
Via: 1.0 fred, 1.1 p.example.net (Apache/1.1)
Proxies and gateways used as a portal through a network firewall
SHOULD NOT, by default, forward the names and ports of hosts within
the firewall region. This information SHOULD only be propagated if
explicitly enabled. If not enabled, the received-by host of any host
behind the firewall SHOULD be replaced by an appropriate pseudonym
for that host.
For organizations that have strong privacy requirements for hiding
internal structures, a proxy MAY combine an ordered subsequence of
Via header field entries with identical received-protocol values into
a single such entry. For example,
Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
could be collapsed to
Via: 1.0 ricky, 1.1 mertz, 1.0 lucy
Applications SHOULD NOT combine multiple entries unless they are all
under the same organizational control and the hosts have already been
replaced by pseudonyms. Applications MUST NOT combine entries which
Fielding, et al. Expires February 5, 2011 [Page 58]
Internet-Draft HTTP/1.1, Part 1 August 2010
have different received-protocol values.
10. IANA Considerations
10.1. Header Field Registration
The Message Header Field Registry located at <http://www.iana.org/
assignments/message-headers/message-header-index.html> shall be
updated with the permanent registrations below (see [RFC3864]):
+-------------------+----------+----------+-------------+
| Header Field Name | Protocol | Status | Reference |
+-------------------+----------+----------+-------------+
| Connection | http | standard | Section 9.1 |
| Content-Length | http | standard | Section 9.2 |
| Date | http | standard | Section 9.3 |
| Host | http | standard | Section 9.4 |
| TE | http | standard | Section 9.5 |
| Trailer | http | standard | Section 9.6 |
| Transfer-Encoding | http | standard | Section 9.7 |
| Upgrade | http | standard | Section 9.8 |
| Via | http | standard | Section 9.9 |
+-------------------+----------+----------+-------------+
The change controller is: "IETF (iesg@ietf.org) - Internet
Engineering Task Force".
10.2. URI Scheme Registration
The entries for the "http" and "https" URI Schemes in the registry
located at <http://www.iana.org/assignments/uri-schemes.html> shall
be updated to point to Sections 2.6.1 and 2.6.2 of this document (see
[RFC4395]).
10.3. Internet Media Type Registrations
This document serves as the specification for the Internet media
types "message/http" and "application/http". The following is to be
registered with IANA (see [RFC4288]).
10.3.1. Internet Media Type message/http
The message/http type can be used to enclose a single HTTP request or
response message, provided that it obeys the MIME restrictions for
all "message" types regarding line length and encodings.
Fielding, et al. Expires February 5, 2011 [Page 59]
Internet-Draft HTTP/1.1, Part 1 August 2010
Type name: message
Subtype name: http
Required parameters: none
Optional parameters: version, msgtype
version: The HTTP-Version number of the enclosed message (e.g.,
"1.1"). If not present, the version can be determined from the
first line of the body.
msgtype: The message type -- "request" or "response". If not
present, the type can be determined from the first line of the
body.
Encoding considerations: only "7bit", "8bit", or "binary" are
permitted
Security considerations: none
Interoperability considerations: none
Published specification: This specification (see Section 10.3.1).
Applications that use this media type:
Additional information:
Magic number(s): none
File extension(s): none
Macintosh file type code(s): none
Person and email address to contact for further information: See
Authors Section.
Intended usage: COMMON
Restrictions on usage: none
Author/Change controller: IESG
Fielding, et al. Expires February 5, 2011 [Page 60]
Internet-Draft HTTP/1.1, Part 1 August 2010
10.3.2. Internet Media Type application/http
The application/http type can be used to enclose a pipeline of one or
more HTTP request or response messages (not intermixed).
Type name: application
Subtype name: http
Required parameters: none
Optional parameters: version, msgtype
version: The HTTP-Version number of the enclosed messages (e.g.,
"1.1"). If not present, the version can be determined from the
first line of the body.
msgtype: The message type -- "request" or "response". If not
present, the type can be determined from the first line of the
body.
Encoding considerations: HTTP messages enclosed by this type are in
"binary" format; use of an appropriate Content-Transfer-Encoding
is required when transmitted via E-mail.
Security considerations: none
Interoperability considerations: none
Published specification: This specification (see Section 10.3.2).
Applications that use this media type:
Additional information:
Magic number(s): none
File extension(s): none
Macintosh file type code(s): none
Person and email address to contact for further information: See
Authors Section.
Intended usage: COMMON
Fielding, et al. Expires February 5, 2011 [Page 61]
Internet-Draft HTTP/1.1, Part 1 August 2010
Restrictions on usage: none
Author/Change controller: IESG
10.4. Transfer Coding Registry
The registration procedure for HTTP Transfer Codings is now defined
by Section 6.2.3 of this document.
The HTTP Transfer Codings Registry located at
<http://www.iana.org/assignments/http-parameters> shall be updated
with the registrations below:
+----------+--------------------------------------+-----------------+
| Name | Description | Reference |
+----------+--------------------------------------+-----------------+
| chunked | Transfer in a series of chunks | Section 6.2.1 |
| compress | UNIX "compress" program method | Section 6.2.2.1 |
| deflate | "deflate" compression mechanism | Section 6.2.2.2 |
| | ([RFC1951]) used inside the "zlib" | |
| | data format ([RFC1950]) | |
| gzip | Same as GNU zip [RFC1952] | Section 6.2.2.3 |
+----------+--------------------------------------+-----------------+
10.5. Upgrade Token Registration
The registration procedure for HTTP Upgrade Tokens -- previously
defined in Section 7.2 of [RFC2817] -- is now defined by
Section 9.8.1 of this document.
The HTTP Status Code Registry located at
<http://www.iana.org/assignments/http-upgrade-tokens/> shall be
updated with the registration below:
+-------+---------------------------+-------------------------------+
| Value | Description | Reference |
+-------+---------------------------+-------------------------------+
| HTTP | Hypertext Transfer | Section 2.5 of this |
| | Protocol | specification |
+-------+---------------------------+-------------------------------+
11. Security Considerations
This section is meant to inform application developers, information
providers, and users of the security limitations in HTTP/1.1 as
described by this document. The discussion does not include
definitive solutions to the problems revealed, though it does make
some suggestions for reducing security risks.
Fielding, et al. Expires February 5, 2011 [Page 62]
Internet-Draft HTTP/1.1, Part 1 August 2010
11.1. Personal Information
HTTP clients are often privy to large amounts of personal information
(e.g., the user's name, location, mail address, passwords, encryption
keys, etc.), and SHOULD be very careful to prevent unintentional
leakage of this information. We very strongly recommend that a
convenient interface be provided for the user to control
dissemination of such information, and that designers and
implementors be particularly careful in this area. History shows
that errors in this area often create serious security and/or privacy
problems and generate highly adverse publicity for the implementor's
company.
11.2. Abuse of Server Log Information
A server is in the position to save personal data about a user's
requests which might identify their reading patterns or subjects of
interest. This information is clearly confidential in nature and its
handling can be constrained by law in certain countries. People
using HTTP to provide data are responsible for ensuring that such
material is not distributed without the permission of any individuals
that are identifiable by the published results.
11.3. Attacks Based On File and Path Names
Implementations of HTTP origin servers SHOULD be careful to restrict
the documents returned by HTTP requests to be only those that were
intended by the server administrators. If an HTTP server translates
HTTP URIs directly into file system calls, the server MUST take
special care not to serve files that were not intended to be
delivered to HTTP clients. For example, UNIX, Microsoft Windows, and
other operating systems use ".." as a path component to indicate a
directory level above the current one. On such a system, an HTTP
server MUST disallow any such construct in the request-target if it
would otherwise allow access to a resource outside those intended to
be accessible via the HTTP server. Similarly, files intended for
reference only internally to the server (such as access control
files, configuration files, and script code) MUST be protected from
inappropriate retrieval, since they might contain sensitive
information. Experience has shown that minor bugs in such HTTP
server implementations have turned into security risks.
11.4. DNS Spoofing
Clients using HTTP rely heavily on the Domain Name Service, and are
thus generally prone to security attacks based on the deliberate mis-
association of IP addresses and DNS names. Clients need to be
cautious in assuming the continuing validity of an IP number/DNS name
Fielding, et al. Expires February 5, 2011 [Page 63]
Internet-Draft HTTP/1.1, Part 1 August 2010
association.
In particular, HTTP clients SHOULD rely on their name resolver for
confirmation of an IP number/DNS name association, rather than
caching the result of previous host name lookups. Many platforms
already can cache host name lookups locally when appropriate, and
they SHOULD be configured to do so. It is proper for these lookups
to be cached, however, only when the TTL (Time To Live) information
reported by the name server makes it likely that the cached
information will remain useful.
If HTTP clients cache the results of host name lookups in order to
achieve a performance improvement, they MUST observe the TTL
information reported by DNS.
If HTTP clients do not observe this rule, they could be spoofed when
a previously-accessed server's IP address changes. As network
renumbering is expected to become increasingly common [RFC1900], the
possibility of this form of attack will grow. Observing this
requirement thus reduces this potential security vulnerability.
This requirement also improves the load-balancing behavior of clients
for replicated servers using the same DNS name and reduces the
likelihood of a user's experiencing failure in accessing sites which
use that strategy.
11.5. Proxies and Caching
By their very nature, HTTP proxies are men-in-the-middle, and
represent an opportunity for man-in-the-middle attacks. Compromise
of the systems on which the proxies run can result in serious
security and privacy problems. Proxies have access to security-
related information, personal information about individual users and
organizations, and proprietary information belonging to users and
content providers. A compromised proxy, or a proxy implemented or
configured without regard to security and privacy considerations,
might be used in the commission of a wide range of potential attacks.
Proxy operators need to protect the systems on which proxies run as
they would protect any system that contains or transports sensitive
information. In particular, log information gathered at proxies
often contains highly sensitive personal information, and/or
information about organizations. Log information needs to be
carefully guarded, and appropriate guidelines for use need to be
developed and followed. (Section 11.2).
Proxy implementors need to consider the privacy and security
implications of their design and coding decisions, and of the
Fielding, et al. Expires February 5, 2011 [Page 64]
Internet-Draft HTTP/1.1, Part 1 August 2010
configuration options they provide to proxy operators (especially the
default configuration).
Users of a proxy need to be aware that proxies are no trustworthier
than the people who run them; HTTP itself cannot solve this problem.
The judicious use of cryptography, when appropriate, might suffice to
protect against a broad range of security and privacy attacks. Such
cryptography is beyond the scope of the HTTP/1.1 specification.
11.6. Denial of Service Attacks on Proxies
They exist. They are hard to defend against. Research continues.
Beware.
12. Acknowledgments
HTTP has evolved considerably over the years. It has benefited from
a large and active developer community--the many people who have
participated on the www-talk mailing list--and it is that community
which has been most responsible for the success of HTTP and of the
World-Wide Web in general. Marc Andreessen, Robert Cailliau, Daniel
W. Connolly, Bob Denny, John Franks, Jean-Francois Groff, Phillip M.
Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob McCool, Lou Montulli,
Dave Raggett, Tony Sanders, and Marc VanHeyningen deserve special
recognition for their efforts in defining early aspects of the
protocol.
This document has benefited greatly from the comments of all those
participating in the HTTP-WG. In addition to those already
mentioned, the following individuals have contributed to this
specification:
Gary Adams, Harald Tveit Alvestrand, Keith Ball, Brian Behlendorf,
Paul Burchard, Maurizio Codogno, Josh Cohen, Mike Cowlishaw, Roman
Czyborra, Michael A. Dolan, Daniel DuBois, David J. Fiander, Alan
Freier, Marc Hedlund, Greg Herlihy, Koen Holtman, Alex Hopmann, Bob
Jernigan, Shel Kaphan, Rohit Khare, John Klensin, Martijn Koster,
Alexei Kosut, David M. Kristol, Daniel LaLiberte, Ben Laurie, Paul J.
Leach, Albert Lunde, John C. Mallery, Jean-Philippe Martin-Flatin,
Mitra, David Morris, Gavin Nicol, Ross Patterson, Bill Perry, Jeffrey
Perry, Scott Powers, Owen Rees, Luigi Rizzo, David Robinson, Marc
Salomon, Rich Salz, Allan M. Schiffman, Jim Seidman, Chuck Shotton,
Eric W. Sink, Simon E. Spero, Richard N. Taylor, Robert S. Thau, Bill
(BearHeart) Weinman, Francois Yergeau, Mary Ellen Zurko.
Thanks to the "cave men" of Palo Alto. You know who you are.
Fielding, et al. Expires February 5, 2011 [Page 65]
Internet-Draft HTTP/1.1, Part 1 August 2010
Jim Gettys (the editor of [RFC2616]) wishes particularly to thank Roy
Fielding, the editor of [RFC2068], along with John Klensin, Jeff
Mogul, Paul Leach, Dave Kristol, Koen Holtman, John Franks, Josh
Cohen, Alex Hopmann, Scott Lawrence, and Larry Masinter for their
help. And thanks go particularly to Jeff Mogul and Scott Lawrence
for performing the "MUST/MAY/SHOULD" audit.
The Apache Group, Anselm Baird-Smith, author of Jigsaw, and Henrik
Frystyk implemented RFC 2068 early, and we wish to thank them for the
discovery of many of the problems that this document attempts to
rectify.
This specification makes heavy use of the augmented BNF and generic
constructs defined by David H. Crocker for [RFC5234]. Similarly, it
reuses many of the definitions provided by Nathaniel Borenstein and
Ned Freed for MIME [RFC2045]. We hope that their inclusion in this
specification will help reduce past confusion over the relationship
between HTTP and Internet mail message formats.
13. References
13.1. Normative References
[ISO-8859-1] International Organization for Standardization,
"Information technology -- 8-bit single-byte coded
graphic character sets -- Part 1: Latin alphabet No.
1", ISO/IEC 8859-1:1998, 1998.
[Part2] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,
Ed., and J. Reschke, Ed., "HTTP/1.1, part 2: Message
Semantics", draft-ietf-httpbis-p2-semantics-11 (work in
progress), August 2010.
[Part3] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,
Ed., and J. Reschke, Ed., "HTTP/1.1, part 3: Message
Payload and Content Negotiation",
draft-ietf-httpbis-p3-payload-11 (work in progress),
August 2010.
[Part6] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,
Ed., Nottingham, M., Ed., and J. Reschke, Ed.,
"HTTP/1.1, part 6: Caching",
draft-ietf-httpbis-p6-cache-11 (work in progress),
August 2010.
Fielding, et al. Expires February 5, 2011 [Page 66]
Internet-Draft HTTP/1.1, Part 1 August 2010
[RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data
Format Specification version 3.3", RFC 1950, May 1996.
RFC 1950 is an Informational RFC, thus it might be less
stable than this specification. On the other hand,
this downward reference was present since the
publication of RFC 2068 in 1997 ([RFC2068]), therefore
it is unlikely to cause problems in practice. See also
[BCP97].
[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
Specification version 1.3", RFC 1951, May 1996.
RFC 1951 is an Informational RFC, thus it might be less
stable than this specification. On the other hand,
this downward reference was present since the
publication of RFC 2068 in 1997 ([RFC2068]), therefore
it is unlikely to cause problems in practice. See also
[BCP97].
[RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and
G. Randers-Pehrson, "GZIP file format specification
version 4.3", RFC 1952, May 1996.
RFC 1952 is an Informational RFC, thus it might be less
stable than this specification. On the other hand,
this downward reference was present since the
publication of RFC 2068 in 1997 ([RFC2068]), therefore
it is unlikely to cause problems in practice. See also
[BCP97].
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
"Uniform Resource Identifier (URI): Generic Syntax",
RFC 3986, STD 66, January 2005.
[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, RFC 5234,
January 2008.
[USASCII] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.
Fielding, et al. Expires February 5, 2011 [Page 67]
Internet-Draft HTTP/1.1, Part 1 August 2010
13.2. Informative References
[BCP97] Klensin, J. and S. Hartman, "Handling Normative
References to Standards-Track Documents", BCP 97,
RFC 4897, June 2007.
[Kri2001] Kristol, D., "HTTP Cookies: Standards, Privacy, and
Politics", ACM Transactions on Internet Technology Vol.
1, #2, November 2001,
<http://arxiv.org/abs/cs.SE/0105018>.
[Nie1997] Frystyk, H., Gettys, J., Prud'hommeaux, E., Lie, H.,
and C. Lilley, "Network Performance Effects of
HTTP/1.1, CSS1, and PNG", ACM Proceedings of the ACM
SIGCOMM '97 conference on Applications, technologies,
architectures, and protocols for computer communication
SIGCOMM '97, September 1997,
<http://doi.acm.org/10.1145/263105.263157>.
[Pad1995] Padmanabhan, V. and J. Mogul, "Improving HTTP Latency",
Computer Networks and ISDN Systems v. 28, pp. 25-35,
December 1995,
<http://portal.acm.org/citation.cfm?id=219094>.
[RFC1123] Braden, R., "Requirements for Internet Hosts -
Application and Support", STD 3, RFC 1123,
October 1989.
[RFC1305] Mills, D., "Network Time Protocol (Version 3)
Specification, Implementation", RFC 1305, March 1992.
[RFC1900] Carpenter, B. and Y. Rekhter, "Renumbering Needs Work",
RFC 1900, February 1996.
[RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen,
"Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945,
May 1996.
[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies", RFC 2045, November 1996.
[RFC2047] Moore, K., "MIME (Multipurpose Internet Mail
Extensions) Part Three: Message Header Extensions for
Non-ASCII Text", RFC 2047, November 1996.
[RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and
T. Berners-Lee, "Hypertext Transfer Protocol --
Fielding, et al. Expires February 5, 2011 [Page 68]
Internet-Draft HTTP/1.1, Part 1 August 2010
HTTP/1.1", RFC 2068, January 1997.
[RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
Mechanism", RFC 2109, February 1997.
[RFC2145] Mogul, J., Fielding, R., Gettys, J., and H. Nielsen,
"Use and Interpretation of HTTP Version Numbers",
RFC 2145, May 1997.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
[RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
HTTP/1.1", RFC 2817, May 2000.
[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.
[RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
Mechanism", RFC 2965, October 2000.
[RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
Procedures for Message Header Fields", BCP 90,
RFC 3864, September 2004.
[RFC4288] Freed, N. and J. Klensin, "Media Type Specifications
and Registration Procedures", BCP 13, RFC 4288,
December 2005.
[RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines
and Registration Procedures for New URI Schemes",
BCP 115, RFC 4395, February 2006.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
an IANA Considerations Section in RFCs", BCP 26,
RFC 5226, May 2008.
[RFC5322] Resnick, P., "Internet Message Format", RFC 5322,
October 2008.
[Spe] Spero, S., "Analysis of HTTP Performance Problems",
<http://sunsite.unc.edu/mdma-release/http-prob.html>.
[Tou1998] Touch, J., Heidemann, J., and K. Obraczka, "Analysis of
HTTP Performance", ISI Research Report ISI/RR-98-463,
Aug 1998, <http://www.isi.edu/touch/pubs/http-perf96/>.
(original report dated Aug. 1996)
Fielding, et al. Expires February 5, 2011 [Page 69]
Internet-Draft HTTP/1.1, Part 1 August 2010
Appendix A. Tolerant Applications
Although this document specifies the requirements for the generation
of HTTP/1.1 messages, not all applications will be correct in their
implementation. We therefore recommend that operational applications
be tolerant of deviations whenever those deviations can be
interpreted unambiguously.
Clients SHOULD be tolerant in parsing the Status-Line and servers
SHOULD be tolerant when parsing the Request-Line. In particular,
they SHOULD accept any amount of WSP characters between fields, even
though only a single SP is required.
The line terminator for header fields is the sequence CRLF. However,
we recommend that applications, when parsing such headers, recognize
a single LF as a line terminator and ignore the leading CR.
The character set of a representation SHOULD be labeled as the lowest
common denominator of the character codes used within that
representation, with the exception that not labeling the
representation is preferred over labeling the representation with the
labels US-ASCII or ISO-8859-1. See [Part3].
Additional rules for requirements on parsing and encoding of dates
and other potential problems with date encodings include:
o HTTP/1.1 clients and caches SHOULD assume that an RFC-850 date
which appears to be more than 50 years in the future is in fact in
the past (this helps solve the "year 2000" problem).
o Although all date formats are specified to be case-sensitive,
recipients SHOULD match day, week and timezone names case-
insensitively.
o An HTTP/1.1 implementation MAY internally represent a parsed
Expires date as earlier than the proper value, but MUST NOT
internally represent a parsed Expires date as later than the
proper value.
o All expiration-related calculations MUST be done in GMT. The
local time zone MUST NOT influence the calculation or comparison
of an age or expiration time.
o If an HTTP header incorrectly carries a date value with a time
zone other than GMT, it MUST be converted into GMT using the most
conservative possible conversion.
Fielding, et al. Expires February 5, 2011 [Page 70]
Internet-Draft HTTP/1.1, Part 1 August 2010
Appendix B. Compatibility with Previous Versions
HTTP has been in use by the World-Wide Web global information
initiative since 1990. The first version of HTTP, later referred to
as HTTP/0.9, was a simple protocol for hypertext data transfer across
the Internet with only a single method and no metadata. HTTP/1.0, as
defined by [RFC1945], added a range of request methods and MIME-like
messaging that could include metadata about the data transferred and
modifiers on the request/response semantics. However, HTTP/1.0 did
not sufficiently take into consideration the effects of hierarchical
proxies, caching, the need for persistent connections, or name-based
virtual hosts. The proliferation of incompletely-implemented
applications calling themselves "HTTP/1.0" further necessitated a
protocol version change in order for two communicating applications
to determine each other's true capabilities.
HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent
requirements that enable reliable implementations, adding only those
new features that will either be safely ignored by an HTTP/1.0
recipient or only sent when communicating with a party advertising
compliance with HTTP/1.1.
It is beyond the scope of a protocol specification to mandate
compliance with previous versions. HTTP/1.1 was deliberately
designed, however, to make supporting previous versions easy. It is
worth noting that, at the time of composing this specification, we
would expect general-purpose HTTP/1.1 servers to:
o understand any valid request in the format of HTTP/1.0 and 1.1;
o respond appropriately with a message in the same major version
used by the client.
And we would expect HTTP/1.1 clients to:
o understand any valid response in the format of HTTP/1.0 or 1.1.
For most implementations of HTTP/1.0, each connection is established
by the client prior to the request and closed by the server after
sending the response. Some implementations implement the Keep-Alive
version of persistent connections described in Section 19.7.1 of
[RFC2068].
B.1. Changes from HTTP/1.0
This section summarizes major differences between versions HTTP/1.0
and HTTP/1.1.
Fielding, et al. Expires February 5, 2011 [Page 71]
Internet-Draft HTTP/1.1, Part 1 August 2010
B.1.1. Changes to Simplify Multi-homed Web Servers and Conserve IP
Addresses
The requirements that clients and servers support the Host request-
header, report an error if the Host request-header (Section 9.4) is
missing from an HTTP/1.1 request, and accept absolute URIs
(Section 4.1.2) are among the most important changes defined by this
specification.
Older HTTP/1.0 clients assumed a one-to-one relationship of IP
addresses and servers; there was no other established mechanism for
distinguishing the intended server of a request than the IP address
to which that request was directed. The changes outlined above will
allow the Internet, once older HTTP clients are no longer common, to
support multiple Web sites from a single IP address, greatly
simplifying large operational Web servers, where allocation of many
IP addresses to a single host has created serious problems. The
Internet will also be able to recover the IP addresses that have been
allocated for the sole purpose of allowing special-purpose domain
names to be used in root-level HTTP URLs. Given the rate of growth
of the Web, and the number of servers already deployed, it is
extremely important that all implementations of HTTP (including
updates to existing HTTP/1.0 applications) correctly implement these
requirements:
o Both clients and servers MUST support the Host request-header.
o A client that sends an HTTP/1.1 request MUST send a Host header.
o Servers MUST report a 400 (Bad Request) error if an HTTP/1.1
request does not include a Host request-header.
o Servers MUST accept absolute URIs.
B.2. Compatibility with HTTP/1.0 Persistent Connections
Some clients and servers might wish to be compatible with some
previous implementations of persistent connections in HTTP/1.0
clients and servers. Persistent connections in HTTP/1.0 are
explicitly negotiated as they are not the default behavior. HTTP/1.0
experimental implementations of persistent connections are faulty,
and the new facilities in HTTP/1.1 are designed to rectify these
problems. The problem was that some existing HTTP/1.0 clients might
send Keep-Alive to a proxy server that doesn't understand Connection,
which would then erroneously forward it to the next inbound server,
which would establish the Keep-Alive connection and result in a hung
HTTP/1.0 proxy waiting for the close on the response. The result is
that HTTP/1.0 clients must be prevented from using Keep-Alive when
Fielding, et al. Expires February 5, 2011 [Page 72]
Internet-Draft HTTP/1.1, Part 1 August 2010
talking to proxies.
However, talking to proxies is the most important use of persistent
connections, so that prohibition is clearly unacceptable. Therefore,
we need some other mechanism for indicating a persistent connection
is desired, which is safe to use even when talking to an old proxy
that ignores Connection. Persistent connections are the default for
HTTP/1.1 messages; we introduce a new keyword (Connection: close) for
declaring non-persistence. See Section 9.1.
The original HTTP/1.0 form of persistent connections (the Connection:
Keep-Alive and Keep-Alive header) is documented in Section 19.7.1 of
[RFC2068].
B.3. Changes from RFC 2616
Empty list elements in list productions have been deprecated.
(Section 1.2.1)
Rules about implicit linear whitespace between certain grammar
productions have been removed; now it's only allowed when
specifically pointed out in the ABNF. The NUL character is no longer
allowed in comment and quoted-string text. The quoted-pair rule no
longer allows escaping control characters other than HTAB. Non-ASCII
content in header fields and reason phrase has been obsoleted and
made opaque (the TEXT rule was removed) (Section 1.2.2)
Clarify that HTTP-Version is case sensitive. (Section 2.5)
Remove reference to non-existent identity transfer-coding value
tokens. (Sections 6.2 and 3.3)
Require that invalid whitespace around field-names be rejected.
(Section 3.2)
Update use of abs_path production from RFC1808 to the path-absolute +
query components of RFC3986. (Section 4.1.2)
Clarification that the chunk length does not include the count of the
octets in the chunk header and trailer. Furthermore disallowed line
folding in chunk extensions. (Section 6.2.1)
Remove hard limit of two connections per server. (Section 7.1.4)
Clarify exactly when close connection options must be sent.
(Section 9.1)
Appendix C. Collected ABNF
Fielding, et al. Expires February 5, 2011 [Page 73]
Internet-Draft HTTP/1.1, Part 1 August 2010
BWS = OWS
Cache-Control = <Cache-Control, defined in [Part6], Section 3.4>
Chunked-Body = *chunk last-chunk trailer-part CRLF
Connection = "Connection:" OWS Connection-v
Connection-v = *( "," OWS ) connection-token *( OWS "," [ OWS
connection-token ] )
Content-Length = "Content-Length:" OWS 1*Content-Length-v
Content-Length-v = 1*DIGIT
Date = "Date:" OWS Date-v
Date-v = HTTP-date
GMT = %x47.4D.54 ; GMT
HTTP-Prot-Name = %x48.54.54.50 ; HTTP
HTTP-Version = HTTP-Prot-Name "/" 1*DIGIT "." 1*DIGIT
HTTP-date = rfc1123-date / obs-date
HTTP-message = start-line *( header-field CRLF ) CRLF [ message-body
]
Host = "Host:" OWS Host-v
Host-v = uri-host [ ":" port ]
MIME-Version = <MIME-Version, defined in [Part3], Appendix A.1>
Method = token
OWS = *( [ obs-fold ] WSP )
Pragma = <Pragma, defined in [Part6], Section 3.4>
RWS = 1*( [ obs-fold ] WSP )
Reason-Phrase = *( WSP / VCHAR / obs-text )
Request = Request-Line *( header-field CRLF ) CRLF [ message-body ]
Request-Line = Method SP request-target SP HTTP-Version CRLF
Response = Status-Line *( header-field CRLF ) CRLF [ message-body ]
Status-Code = 3DIGIT
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
TE = "TE:" OWS TE-v
TE-v = [ ( "," / t-codings ) *( OWS "," [ OWS t-codings ] ) ]
Trailer = "Trailer:" OWS Trailer-v
Trailer-v = *( "," OWS ) field-name *( OWS "," [ OWS field-name ] )
Transfer-Encoding = "Transfer-Encoding:" OWS Transfer-Encoding-v
Transfer-Encoding-v = *( "," OWS ) transfer-coding *( OWS "," [ OWS
transfer-coding ] )
URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>
Fielding, et al. Expires February 5, 2011 [Page 74]
Internet-Draft HTTP/1.1, Part 1 August 2010
Upgrade = "Upgrade:" OWS Upgrade-v
Upgrade-v = *( "," OWS ) product *( OWS "," [ OWS product ] )
Via = "Via:" OWS Via-v
Via-v = *( "," OWS ) received-protocol RWS received-by [ RWS comment
] *( OWS "," [ OWS received-protocol RWS received-by [ RWS comment ]
] )
Warning = <Warning, defined in [Part6], Section 3.6>
absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3>
asctime-date = day-name SP date3 SP time-of-day SP year
attribute = token
authority = <authority, defined in [RFC3986], Section 3.2>
chunk = chunk-size *WSP [ chunk-ext ] CRLF chunk-data CRLF
chunk-data = 1*OCTET
chunk-ext = *( ";" *WSP chunk-ext-name [ "=" chunk-ext-val ] *WSP )
chunk-ext-name = token
chunk-ext-val = token / quoted-str-nf
chunk-size = 1*HEXDIG
comment = "(" *( ctext / quoted-cpair / comment ) ")"
connection-token = token
ctext = OWS / %x21-27 ; '!'-'''
/ %x2A-5B ; '*'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text
date1 = day SP month SP year
date2 = day "-" month "-" 2DIGIT
date3 = month SP ( 2DIGIT / ( SP DIGIT ) )
day = 2DIGIT
day-name = %x4D.6F.6E ; Mon
/ %x54.75.65 ; Tue
/ %x57.65.64 ; Wed
/ %x54.68.75 ; Thu
/ %x46.72.69 ; Fri
/ %x53.61.74 ; Sat
/ %x53.75.6E ; Sun
day-name-l = %x4D.6F.6E.64.61.79 ; Monday
/ %x54.75.65.73.64.61.79 ; Tuesday
/ %x57.65.64.6E.65.73.64.61.79 ; Wednesday
/ %x54.68.75.72.73.64.61.79 ; Thursday
/ %x46.72.69.64.61.79 ; Friday
/ %x53.61.74.75.72.64.61.79 ; Saturday
/ %x53.75.6E.64.61.79 ; Sunday
field-content = *( WSP / VCHAR / obs-text )
Fielding, et al. Expires February 5, 2011 [Page 75]
Internet-Draft HTTP/1.1, Part 1 August 2010
field-name = token
field-value = *( field-content / OWS )
general-header = Cache-Control / Connection / Date / Pragma / Trailer
/ Transfer-Encoding / Upgrade / Via / Warning / MIME-Version
header-field = field-name ":" OWS [ field-value ] OWS
hour = 2DIGIT
http-URI = "http://" authority path-abempty [ "?" query ]
https-URI = "https://" authority path-abempty [ "?" query ]
last-chunk = 1*"0" *WSP [ chunk-ext ] CRLF
message-body = *OCTET
minute = 2DIGIT
month = %x4A.61.6E ; Jan
/ %x46.65.62 ; Feb
/ %x4D.61.72 ; Mar
/ %x41.70.72 ; Apr
/ %x4D.61.79 ; May
/ %x4A.75.6E ; Jun
/ %x4A.75.6C ; Jul
/ %x41.75.67 ; Aug
/ %x53.65.70 ; Sep
/ %x4F.63.74 ; Oct
/ %x4E.6F.76 ; Nov
/ %x44.65.63 ; Dec
obs-date = rfc850-date / asctime-date
obs-fold = CRLF
obs-text = %x80-FF
partial-URI = relative-part [ "?" query ]
path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>
path-absolute = <path-absolute, defined in [RFC3986], Section 3.3>
port = <port, defined in [RFC3986], Section 3.2.3>
product = token [ "/" product-version ]
product-version = token
protocol-name = token
protocol-version = token
pseudonym = token
qdtext = OWS / "!" / %x23-5B ; '#'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text
qdtext-nf = WSP / "!" / %x23-5B ; '#'-'['
/ %x5D-7E ; ']'-'~'
/ obs-text
Fielding, et al. Expires February 5, 2011 [Page 76]
Internet-Draft HTTP/1.1, Part 1 August 2010
query = <query, defined in [RFC3986], Section 3.4>
quoted-cpair = "\" ( WSP / VCHAR / obs-text )
quoted-pair = "\" ( WSP / VCHAR / obs-text )
quoted-str-nf = DQUOTE *( qdtext-nf / quoted-pair ) DQUOTE
quoted-string = DQUOTE *( qdtext / quoted-pair ) DQUOTE
qvalue = ( "0" [ "." *3DIGIT ] ) / ( "1" [ "." *3"0" ] )
received-by = ( uri-host [ ":" port ] ) / pseudonym
received-protocol = [ protocol-name "/" ] protocol-version
relative-part = <relative-part, defined in [RFC3986], Section 4.2>
request-header = <request-header, defined in [Part2], Section 3>
request-target = "*" / absolute-URI / ( path-absolute [ "?" query ] )
/ authority
response-header = <response-header, defined in [Part2], Section 5>
rfc1123-date = day-name "," SP date1 SP time-of-day SP GMT
rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
second = 2DIGIT
special = "(" / ")" / "<" / ">" / "@" / "," / ";" / ":" / "\" /
DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}"
start-line = Request-Line / Status-Line
t-codings = "trailers" / ( transfer-extension [ te-params ] )
tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
"^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
te-ext = OWS ";" OWS token [ "=" word ]
te-params = OWS ";" OWS "q=" qvalue *te-ext
time-of-day = hour ":" minute ":" second
token = 1*tchar
trailer-part = *( header-field CRLF )
transfer-coding = "chunked" / "compress" / "deflate" / "gzip" /
transfer-extension
transfer-extension = token *( OWS ";" OWS transfer-parameter )
transfer-parameter = attribute BWS "=" BWS value
uri-host = <host, defined in [RFC3986], Section 3.2.2>
value = word
word = token / quoted-string
year = 4DIGIT
Fielding, et al. Expires February 5, 2011 [Page 77]
Internet-Draft HTTP/1.1, Part 1 August 2010
ABNF diagnostics:
; Chunked-Body defined but not used
; Content-Length defined but not used
; HTTP-message defined but not used
; Host defined but not used
; Request defined but not used
; Response defined but not used
; TE defined but not used
; URI-reference defined but not used
; general-header defined but not used
; http-URI defined but not used
; https-URI defined but not used
; partial-URI defined but not used
; request-header defined but not used
; response-header defined but not used
; special defined but not used
Appendix D. Change Log (to be removed by RFC Editor before publication)
D.1. Since RFC2616
Extracted relevant partitions from [RFC2616].
D.2. Since draft-ietf-httpbis-p1-messaging-00
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/1>: "HTTP Version
should be case sensitive"
(<http://purl.org/NET/http-errata#verscase>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/2>: "'unsafe'
characters" (<http://purl.org/NET/http-errata#unsafe-uri>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/3>: "Chunk Size
Definition" (<http://purl.org/NET/http-errata#chunk-size>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/4>: "Message Length"
(<http://purl.org/NET/http-errata#msg-len-chars>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/8>: "Media Type
Registrations" (<http://purl.org/NET/http-errata#media-reg>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/11>: "URI includes
query" (<http://purl.org/NET/http-errata#uriquery>)
Fielding, et al. Expires February 5, 2011 [Page 78]
Internet-Draft HTTP/1.1, Part 1 August 2010
o <http://tools.ietf.org/wg/httpbis/trac/ticket/15>: "No close on
1xx responses" (<http://purl.org/NET/http-errata#noclose1xx>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/16>: "Remove
'identity' token references"
(<http://purl.org/NET/http-errata#identity>)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/26>: "Import query
BNF"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/31>: "qdtext BNF"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
Informative references"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/42>: "RFC2606
Compliance"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/45>: "RFC977
reference"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/46>: "RFC1700
references"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/47>: "inconsistency
in date format explanation"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/48>: "Date reference
typo"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/65>: "Informative
references"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/66>: "ISO-8859-1
Reference"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/86>: "Normative up-
to-date references"
Other changes:
o Update media type registrations to use RFC4288 template.
o Use names of RFC4234 core rules DQUOTE and WSP, fix broken ABNF
for chunk-data (work in progress on
<http://tools.ietf.org/wg/httpbis/trac/ticket/36>)
Fielding, et al. Expires February 5, 2011 [Page 79]
Internet-Draft HTTP/1.1, Part 1 August 2010
D.3. Since draft-ietf-httpbis-p1-messaging-01
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/19>: "Bodies on GET
(and other) requests"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/55>: "Updating to
RFC4288"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/57>: "Status Code
and Reason Phrase"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/82>: "rel_path not
used"
Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):
o Get rid of duplicate BNF rule names ("host" -> "uri-host",
"trailer" -> "trailer-part").
o Avoid underscore character in rule names ("http_URL" -> "http-
URL", "abs_path" -> "path-absolute").
o Add rules for terms imported from URI spec ("absoluteURI",
"authority", "path-absolute", "port", "query", "relativeURI",
"host) -- these will have to be updated when switching over to
RFC3986.
o Synchronize core rules with RFC5234.
o Get rid of prose rules that span multiple lines.
o Get rid of unused rules LOALPHA and UPALPHA.
o Move "Product Tokens" section (back) into Part 1, as "token" is
used in the definition of the Upgrade header.
o Add explicit references to BNF syntax and rules imported from
other parts of the specification.
o Rewrite prose rule "token" in terms of "tchar", rewrite prose rule
"TEXT".
Fielding, et al. Expires February 5, 2011 [Page 80]
Internet-Draft HTTP/1.1, Part 1 August 2010
D.4. Since draft-ietf-httpbis-p1-messaging-02
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/51>: "HTTP-date vs.
rfc1123-date"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/64>: "WS in quoted-
pair"
Ongoing work on IANA Message Header Registration
(<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):
o Reference RFC 3984, and update header registrations for headers
defined in this document.
Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):
o Replace string literals when the string really is case-sensitive
(HTTP-Version).
D.5. Since draft-ietf-httpbis-p1-messaging-03
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/28>: "Connection
closing"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/97>: "Move
registrations and registry information to IANA Considerations"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/120>: "need new URL
for PAD1995 reference"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/127>: "IANA
Considerations: update HTTP URI scheme registration"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/128>: "Cite HTTPS
URI scheme definition"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/129>: "List-type
headers vs Set-Cookie"
Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):
Fielding, et al. Expires February 5, 2011 [Page 81]
Internet-Draft HTTP/1.1, Part 1 August 2010
o Replace string literals when the string really is case-sensitive
(HTTP-Date).
o Replace HEX by HEXDIG for future consistence with RFC 5234's core
rules.
D.6. Since draft-ietf-httpbis-p1-messaging-04
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/34>: "Out-of-date
reference for URIs"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/132>: "RFC 2822 is
updated by RFC 5322"
Ongoing work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):
o Use "/" instead of "|" for alternatives.
o Get rid of RFC822 dependency; use RFC5234 plus extensions instead.
o Only reference RFC 5234's core rules.
o Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
whitespace ("OWS") and required whitespace ("RWS").
o Rewrite ABNFs to spell out whitespace rules, factor out header
value format definitions.
D.7. Since draft-ietf-httpbis-p1-messaging-05
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/30>: "Header LWS"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/52>: "Sort 1.3
Terminology"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/63>: "RFC2047
encoded words"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/74>: "Character
Encodings in TEXT"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/77>: "Line Folding"
Fielding, et al. Expires February 5, 2011 [Page 82]
Internet-Draft HTTP/1.1, Part 1 August 2010
o <http://tools.ietf.org/wg/httpbis/trac/ticket/83>: "OPTIONS * and
proxies"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/94>: "Reason-Phrase
BNF"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/111>: "Use of TEXT"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/118>: "Join
"Differences Between HTTP Entities and RFC 2045 Entities"?"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/134>: "RFC822
reference left in discussion of date formats"
Final work on ABNF conversion
(<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):
o Rewrite definition of list rules, deprecate empty list elements.
o Add appendix containing collected and expanded ABNF.
Other changes:
o Rewrite introduction; add mostly new Architecture Section.
o Move definition of quality values from Part 3 into Part 1; make TE
request header grammar independent of accept-params (defined in
Part 3).
D.8. Since draft-ietf-httpbis-p1-messaging-06
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/161>: "base for
numeric protocol elements"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/162>: "comment ABNF"
Partly resolved issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/88>: "205 Bodies"
(took out language that implied that there might be methods for
which a request body MUST NOT be included)
o <http://tools.ietf.org/wg/httpbis/trac/ticket/163>: "editorial
improvements around HTTP-date"
Fielding, et al. Expires February 5, 2011 [Page 83]
Internet-Draft HTTP/1.1, Part 1 August 2010
D.9. Since draft-ietf-httpbis-p1-messaging-07
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/93>: "Repeating
single-value headers"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/131>: "increase
connection limit"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/157>: "IP addresses
in URLs"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/172>: "take over
HTTP Upgrade Token Registry"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/173>: "CR and LF in
chunk extension values"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/184>: "HTTP/0.9
support"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/188>: "pick IANA
policy (RFC5226) for Transfer Coding / Content Coding"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/189>: "move
definitions of gzip/deflate/compress to part 1"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/194>: "disallow
control characters in quoted-pair"
Partly resolved issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/148>: "update IANA
requirements wrt Transfer-Coding values" (add the IANA
Considerations subsection)
D.10. Since draft-ietf-httpbis-p1-messaging-08
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/201>: "header
parsing, treatment of leading and trailing OWS"
Partly resolved issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/60>: "Placement of
13.5.1 and 13.5.2"
Fielding, et al. Expires February 5, 2011 [Page 84]
Internet-Draft HTTP/1.1, Part 1 August 2010
o <http://tools.ietf.org/wg/httpbis/trac/ticket/200>: "use of term
"word" when talking about header structure"
D.11. Since draft-ietf-httpbis-p1-messaging-09
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/73>: "Clarification
of the term 'deflate'"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/83>: "OPTIONS * and
proxies"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/122>: "MIME-Version
not listed in P1, general header fields"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/143>: "IANA registry
for content/transfer encodings"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/165>: "Case-
sensitivity of HTTP-date"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/200>: "use of term
"word" when talking about header structure"
Partly resolved issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/196>: "Term for the
requested resource's URI"
D.12. Since draft-ietf-httpbis-p1-messaging-10
Closed issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/28>: "Connection
Closing"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/90>: "Delimiting
messages with multipart/byteranges"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/95>: "Handling
multiple Content-Length headers"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/109>: "Clarify
entity / representation / variant terminology"
o <http://tools.ietf.org/wg/httpbis/trac/ticket/220>: "consider
removing the 'changes from 2068' sections"
Fielding, et al. Expires February 5, 2011 [Page 85]
Internet-Draft HTTP/1.1, Part 1 August 2010
Partly resolved issues:
o <http://tools.ietf.org/wg/httpbis/trac/ticket/159>: "HTTP(s) URI
scheme definitions"
Index
A
application/http Media Type 61
B
browser 10
C
cache 13
cacheable 14
chunked (Coding Format) 35
client 10
Coding Format
chunked 35
compress 38
deflate 38
gzip 38
compress (Coding Format) 38
connection 10
Connection header 49
Content-Length header 50
D
Date header 51
deflate (Coding Format) 38
downstream 12
E
effective request URI 29
G
gateway 13
Grammar
absolute-URI 16
ALPHA 7
asctime-date 34
attribute 34
authority 16
BWS 9
chunk 35
chunk-data 35
chunk-ext 35
Fielding, et al. Expires February 5, 2011 [Page 86]
Internet-Draft HTTP/1.1, Part 1 August 2010
chunk-ext-name 35
chunk-ext-val 35
chunk-size 35
Chunked-Body 35
comment 22
Connection 49
connection-token 49
Connection-v 49
Content-Length 50
Content-Length-v 50
CR 7
CRLF 7
ctext 22
CTL 7
Date 51
Date-v 51
date1 33
date2 34
date3 34
day 33
day-name 33
day-name-l 33
DIGIT 7
DQUOTE 7
extension-code 32
extension-method 26
field-content 20
field-name 20
field-value 20
general-header 26
GMT 33
header-field 20
HEXDIG 7
Host 52
Host-v 52
hour 33
HTTP-date 32
HTTP-message 19
HTTP-Prot-Name 15
http-URI 16
HTTP-Version 15
https-URI 18
last-chunk 35
LF 7
message-body 22
Method 26
minute 33
month 33
Fielding, et al. Expires February 5, 2011 [Page 87]
Internet-Draft HTTP/1.1, Part 1 August 2010
obs-date 33
obs-text 10
OCTET 7
OWS 9
path-absolute 16
port 16
product 39
product-version 39
protocol-name 57
protocol-version 57
pseudonym 57
qdtext 10
qdtext-nf 35
query 16
quoted-cpair 22
quoted-pair 10
quoted-str-nf 35
quoted-string 10
qvalue 39
Reason-Phrase 32
received-by 57
received-protocol 57
Request 26
Request-Line 26
request-target 27
Response 31
rfc850-date 34
rfc1123-date 33
RWS 9
second 33
SP 7
special 9
Status-Code 32
Status-Line 31
t-codings 53
tchar 9
TE 53
te-ext 53
te-params 53
TE-v 53
time-of-day 33
token 9
Trailer 54
trailer-part 35
Trailer-v 54
transfer-coding 34
Transfer-Encoding 55
Transfer-Encoding-v 55
Fielding, et al. Expires February 5, 2011 [Page 88]
Internet-Draft HTTP/1.1, Part 1 August 2010
transfer-extension 34
transfer-parameter 34
Upgrade 55
Upgrade-v 55
uri-host 16
URI-reference 16
value 34
VCHAR 7
Via 57
Via-v 57
word 9
WSP 7
year 33
gzip (Coding Format) 38
H
header field 19
header section 19
Headers
Connection 49
Content-Length 50
Date 51
Host 52
TE 53
Trailer 54
Transfer-Encoding 55
Upgrade 55
Via 57
headers 19
Host header 52
http URI scheme 16
https URI scheme 18
I
inbound 12
intermediary 12
M
Media Type
application/http 61
message/http 59
message 11
message/http Media Type 59
O
origin server 10
outbound 12
Fielding, et al. Expires February 5, 2011 [Page 89]
Internet-Draft HTTP/1.1, Part 1 August 2010
P
proxy 12
R
request 11
resource 16
response 11
reverse proxy 13
S
server 10
spider 10
T
target resource 29
TE header 53
Trailer header 54
Transfer-Encoding header 55
tunnel 13
U
Upgrade header 55
upstream 12
URI scheme
http 16
https 18
user agent 10
V
Via header 57
Authors' Addresses
Roy T. Fielding (editor)
Day Software
23 Corporate Plaza DR, Suite 280
Newport Beach, CA 92660
USA
Phone: +1-949-706-5300
Fax: +1-949-706-5305
EMail: fielding@gbiv.com
URI: http://roy.gbiv.com/
Fielding, et al. Expires February 5, 2011 [Page 90]
Internet-Draft HTTP/1.1, Part 1 August 2010
Jim Gettys
Alcatel-Lucent Bell Labs
21 Oak Knoll Road
Carlisle, MA 01741
USA
EMail: jg@freedesktop.org
URI: http://gettys.wordpress.com/
Jeffrey C. Mogul
Hewlett-Packard Company
HP Labs, Large Scale Systems Group
1501 Page Mill Road, MS 1177
Palo Alto, CA 94304
USA
EMail: JeffMogul@acm.org
Henrik Frystyk Nielsen
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
USA
EMail: henrikn@microsoft.com
Larry Masinter
Adobe Systems, Incorporated
345 Park Ave
San Jose, CA 95110
USA
EMail: LMM@acm.org
URI: http://larry.masinter.net/
Paul J. Leach
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
EMail: paulle@microsoft.com
Fielding, et al. Expires February 5, 2011 [Page 91]
Internet-Draft HTTP/1.1, Part 1 August 2010
Tim Berners-Lee
World Wide Web Consortium
MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, Building 32
32 Vassar Street
Cambridge, MA 02139
USA
EMail: timbl@w3.org
URI: http://www.w3.org/People/Berners-Lee/
Yves Lafon (editor)
World Wide Web Consortium
W3C / ERCIM
2004, rte des Lucioles
Sophia-Antipolis, AM 06902
France
EMail: ylafon@w3.org
URI: http://www.raubacapeu.net/people/yves/
Julian F. Reschke (editor)
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany
Phone: +49 251 2807760
Fax: +49 251 2807761
EMail: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/
Fielding, et al. Expires February 5, 2011 [Page 92]
|