aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/Monitoring/Monitoring.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacAU/Monitoring/Monitoring.cpp')
-rwxr-xr-xplugins/MacAU/Monitoring/Monitoring.cpp727
1 files changed, 727 insertions, 0 deletions
diff --git a/plugins/MacAU/Monitoring/Monitoring.cpp b/plugins/MacAU/Monitoring/Monitoring.cpp
new file mode 100755
index 0000000..eadf110
--- /dev/null
+++ b/plugins/MacAU/Monitoring/Monitoring.cpp
@@ -0,0 +1,727 @@
+/*
+* File: Monitoring.cpp
+*
+* Version: 1.0
+*
+* Created: 9/2/19
+*
+* Copyright: Copyright © 2019 Airwindows, All Rights Reserved
+*
+* Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in
+* consideration of your agreement to the following terms, and your use, installation, modification
+* or redistribution of this Apple software constitutes acceptance of these terms. If you do
+* not agree with these terms, please do not use, install, modify or redistribute this Apple
+* software.
+*
+* In consideration of your agreement to abide by the following terms, and subject to these terms,
+* Apple grants you a personal, non-exclusive license, under Apple's copyrights in this
+* original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the
+* Apple Software, with or without modifications, in source and/or binary forms; provided that if you
+* redistribute the Apple Software in its entirety and without modifications, you must retain this
+* notice and the following text and disclaimers in all such redistributions of the Apple Software.
+* Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to
+* endorse or promote products derived from the Apple Software without specific prior written
+* permission from Apple. Except as expressly stated in this notice, no other rights or
+* licenses, express or implied, are granted by Apple herein, including but not limited to any
+* patent rights that may be infringed by your derivative works or by other works in which the
+* Apple Software may be incorporated.
+*
+* The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
+* IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
+* AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE
+* OR IN COMBINATION WITH YOUR PRODUCTS.
+*
+* IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL
+* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE,
+* REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
+* UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN
+* IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+*/
+/*=============================================================================
+ Monitoring.cpp
+
+=============================================================================*/
+#include "Monitoring.h"
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+COMPONENT_ENTRY(Monitoring)
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::Monitoring
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Monitoring::Monitoring(AudioUnit component)
+ : AUEffectBase(component)
+{
+ CreateElements();
+ Globals()->UseIndexedParameters(kNumberOfParameters);
+ SetParameter(kParam_One, kDefaultValue_ParamOne );
+
+#if AU_DEBUG_DISPATCHER
+ mDebugDispatcher = new AUDebugDispatcher (this);
+#endif
+
+}
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::GetParameterValueStrings
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::GetParameterValueStrings(AudioUnitScope inScope,
+ AudioUnitParameterID inParameterID,
+ CFArrayRef * outStrings)
+{
+ if ((inScope == kAudioUnitScope_Global) && (inParameterID == kParam_One)) //ID must be actual name of parameter identifier, not number
+ {
+ if (outStrings == NULL) return noErr;
+ CFStringRef strings [] =
+ {
+ kMenuItem_NJAD,
+ kMenuItem_NJCD,
+ kMenuItem_PEAK,
+ kMenuItem_SLEW,
+ kMenuItem_SUBS,
+ kMenuItem_MONO,
+ kMenuItem_SIDE,
+ kMenuItem_VINYL,
+ kMenuItem_AURAT,
+ kMenuItem_PHONE,
+ kMenuItem_CANSA,
+ kMenuItem_CANSB
+ };
+ *outStrings = CFArrayCreate (
+ NULL,
+ (const void **) strings,
+ (sizeof (strings) / sizeof (strings [0])),
+ NULL
+ );
+ return noErr;
+ }
+ return kAudioUnitErr_InvalidProperty;
+}
+
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::GetParameterInfo
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::GetParameterInfo(AudioUnitScope inScope,
+ AudioUnitParameterID inParameterID,
+ AudioUnitParameterInfo &outParameterInfo )
+{
+ ComponentResult result = noErr;
+
+ outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable
+ | kAudioUnitParameterFlag_IsReadable;
+
+ if (inScope == kAudioUnitScope_Global) {
+ switch(inParameterID)
+ {
+ case kParam_One:
+ AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
+ outParameterInfo.unit = kAudioUnitParameterUnit_Indexed;
+ outParameterInfo.minValue = kNJAD;
+ outParameterInfo.maxValue = kCANSB;
+ outParameterInfo.defaultValue = kDefaultValue_ParamOne;
+ break;
+ default:
+ result = kAudioUnitErr_InvalidParameter;
+ break;
+ }
+ } else {
+ result = kAudioUnitErr_InvalidParameter;
+ }
+
+
+
+ return result;
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::GetPropertyInfo
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::GetPropertyInfo (AudioUnitPropertyID inID,
+ AudioUnitScope inScope,
+ AudioUnitElement inElement,
+ UInt32 & outDataSize,
+ Boolean & outWritable)
+{
+ return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// state that plugin supports only stereo-in/stereo-out processing
+UInt32 Monitoring::SupportedNumChannels(const AUChannelInfo ** outInfo)
+{
+ if (outInfo != NULL)
+ {
+ static AUChannelInfo info;
+ info.inChannels = 2;
+ info.outChannels = 2;
+ *outInfo = &info;
+ }
+
+ return 1;
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::GetProperty
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::GetProperty( AudioUnitPropertyID inID,
+ AudioUnitScope inScope,
+ AudioUnitElement inElement,
+ void * outData )
+{
+ return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
+}
+
+// Monitoring::Initialize
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::Initialize()
+{
+ ComponentResult result = AUEffectBase::Initialize();
+ if (result == noErr)
+ Reset(kAudioUnitScope_Global, 0);
+ return result;
+}
+
+#pragma mark ____MonitoringEffectKernel
+
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::MonitoringKernel::Reset()
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult Monitoring::Reset(AudioUnitScope inScope, AudioUnitElement inElement)
+{
+ bynL[0] = 1000.0;
+ bynL[1] = 301.0;
+ bynL[2] = 176.0;
+ bynL[3] = 125.0;
+ bynL[4] = 97.0;
+ bynL[5] = 79.0;
+ bynL[6] = 67.0;
+ bynL[7] = 58.0;
+ bynL[8] = 51.0;
+ bynL[9] = 46.0;
+ bynL[10] = 1000.0;
+ noiseShapingL = 0.0;
+ bynR[0] = 1000.0;
+ bynR[1] = 301.0;
+ bynR[2] = 176.0;
+ bynR[3] = 125.0;
+ bynR[4] = 97.0;
+ bynR[5] = 79.0;
+ bynR[6] = 67.0;
+ bynR[7] = 58.0;
+ bynR[8] = 51.0;
+ bynR[9] = 46.0;
+ bynR[10] = 1000.0;
+ noiseShapingR = 0.0;
+ //end NJAD
+ for(int count = 0; count < 1502; count++) {
+ aL[count] = 0.0; bL[count] = 0.0; cL[count] = 0.0; dL[count] = 0.0;
+ aR[count] = 0.0; bR[count] = 0.0; cR[count] = 0.0; dR[count] = 0.0;
+ }
+ ax = 1; bx = 1; cx = 1; dx = 1;
+ //PeaksOnly
+ lastSampleL = 0.0; lastSampleR = 0.0;
+ //SlewOnly
+ iirSampleAL = 0.0; iirSampleBL = 0.0; iirSampleCL = 0.0; iirSampleDL = 0.0; iirSampleEL = 0.0; iirSampleFL = 0.0; iirSampleGL = 0.0;
+ iirSampleHL = 0.0; iirSampleIL = 0.0; iirSampleJL = 0.0; iirSampleKL = 0.0; iirSampleLL = 0.0; iirSampleML = 0.0; iirSampleNL = 0.0; iirSampleOL = 0.0; iirSamplePL = 0.0;
+ iirSampleQL = 0.0; iirSampleRL = 0.0; iirSampleSL = 0.0;
+ iirSampleTL = 0.0; iirSampleUL = 0.0; iirSampleVL = 0.0;
+ iirSampleWL = 0.0; iirSampleXL = 0.0; iirSampleYL = 0.0; iirSampleZL = 0.0;
+
+ iirSampleAR = 0.0; iirSampleBR = 0.0; iirSampleCR = 0.0; iirSampleDR = 0.0; iirSampleER = 0.0; iirSampleFR = 0.0; iirSampleGR = 0.0;
+ iirSampleHR = 0.0; iirSampleIR = 0.0; iirSampleJR = 0.0; iirSampleKR = 0.0; iirSampleLR = 0.0; iirSampleMR = 0.0; iirSampleNR = 0.0; iirSampleOR = 0.0; iirSamplePR = 0.0;
+ iirSampleQR = 0.0; iirSampleRR = 0.0; iirSampleSR = 0.0;
+ iirSampleTR = 0.0; iirSampleUR = 0.0; iirSampleVR = 0.0;
+ iirSampleWR = 0.0; iirSampleXR = 0.0; iirSampleYR = 0.0; iirSampleZR = 0.0; // o/`
+ //SubsOnly
+ for (int x = 0; x < 11; x++) {biquad[x] = 0.0;}
+ //Bandpasses
+ fpd = 17;
+ return noErr;
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// Monitoring::ProcessBufferLists
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+OSStatus Monitoring::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags,
+ const AudioBufferList & inBuffer,
+ AudioBufferList & outBuffer,
+ UInt32 inFramesToProcess)
+{
+ Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData);
+ Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData);
+ Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData);
+ Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData);
+ UInt32 nSampleFrames = inFramesToProcess;
+ long double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= GetSampleRate();
+ int processing = (int) GetParameter( kParam_One );
+ int am = (int)149.0 * overallscale;
+ int bm = (int)179.0 * overallscale;
+ int cm = (int)191.0 * overallscale;
+ int dm = (int)223.0 * overallscale; //these are 'good' primes, spacing out the allpasses
+ int allpasstemp;
+ //for PeaksOnly
+ biquad[0] = 0.0385/overallscale; biquad[1] = 0.0825; //define as VINYL unless overridden
+ if (processing == kAURAT) {biquad[0] = 0.0375/overallscale; biquad[1] = 0.1575;}
+ if (processing == kPHONE) {biquad[0] = 0.1245/overallscale; biquad[1] = 0.46;}
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1.0 / (1.0 + K / biquad[1] + K * K);
+ biquad[2] = K / biquad[1] * norm;
+ biquad[4] = -biquad[2]; //for bandpass, ignore [3] = 0.0
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ biquad[6] = (1.0 - K / biquad[1] + K * K) * norm;
+ //for Bandpasses
+
+ while (nSampleFrames-- > 0) {
+ long double inputSampleL = *inputL;
+ long double inputSampleR = *inputR;
+ if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
+ if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
+
+ switch (processing)
+ {
+ case 0:
+ case 1:
+ break;
+ case 2:
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+ allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am;
+ inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5;
+ ax--; if (ax < 0 || ax > am) {ax = am;}
+ inputSampleL += (aL[ax]);
+ inputSampleR += (aR[ax]);
+ //a single Midiverb-style allpass
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ allpasstemp = bx - 1; if (allpasstemp < 0 || allpasstemp > bm) allpasstemp = bm;
+ inputSampleL -= bL[allpasstemp]*0.5; bL[bx] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= bR[allpasstemp]*0.5; bR[bx] = inputSampleR; inputSampleR *= 0.5;
+ bx--; if (bx < 0 || bx > bm) {bx = bm;}
+ inputSampleL += (bL[bx]);
+ inputSampleR += (bR[bx]);
+ //a single Midiverb-style allpass
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ allpasstemp = cx - 1; if (allpasstemp < 0 || allpasstemp > cm) allpasstemp = cm;
+ inputSampleL -= cL[allpasstemp]*0.5; cL[cx] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= cR[allpasstemp]*0.5; cR[cx] = inputSampleR; inputSampleR *= 0.5;
+ cx--; if (cx < 0 || cx > cm) {cx = cm;}
+ inputSampleL += (cL[cx]);
+ inputSampleR += (cR[cx]);
+ //a single Midiverb-style allpass
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm;
+ inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5;
+ dx--; if (dx < 0 || dx > dm) {dx = dm;}
+ inputSampleL += (dL[dx]);
+ inputSampleR += (dR[dx]);
+ //a single Midiverb-style allpass
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ inputSampleL *= 0.63679; inputSampleR *= 0.63679; //scale it to 0dB output at full blast
+ //PeaksOnly
+ break;
+ case 3:
+ Float64 trim;
+ trim = 2.302585092994045684017991; //natural logarithm of 10
+ long double slewSample; slewSample = (inputSampleL - lastSampleL)*trim;
+ lastSampleL = inputSampleL;
+ if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0;
+ inputSampleL = slewSample;
+ slewSample = (inputSampleR - lastSampleR)*trim;
+ lastSampleR = inputSampleR;
+ if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0;
+ inputSampleR = slewSample;
+ //SlewOnly
+ break;
+ case 4:
+ Float64 iirAmount; iirAmount = (2250/44100.0) / overallscale;
+ Float64 gain; gain = 1.42;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+
+ iirSampleAL = (iirSampleAL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL;
+ iirSampleAR = (iirSampleAR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleBL = (iirSampleBL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL;
+ iirSampleBR = (iirSampleBR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleCL = (iirSampleCL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL;
+ iirSampleCR = (iirSampleCR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleDL = (iirSampleDL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL;
+ iirSampleDR = (iirSampleDR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleEL = (iirSampleEL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL;
+ iirSampleER = (iirSampleER * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleER;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleFL = (iirSampleFL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL;
+ iirSampleFR = (iirSampleFR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleGL = (iirSampleGL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL;
+ iirSampleGR = (iirSampleGR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleHL = (iirSampleHL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL;
+ iirSampleHR = (iirSampleHR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleIL = (iirSampleIL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL;
+ iirSampleIR = (iirSampleIR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleJL = (iirSampleJL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL;
+ iirSampleJR = (iirSampleJR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleKL = (iirSampleKL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL;
+ iirSampleKR = (iirSampleKR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleLL = (iirSampleLL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL;
+ iirSampleLR = (iirSampleLR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleML = (iirSampleML * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleML;
+ iirSampleMR = (iirSampleMR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleNL = (iirSampleNL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL;
+ iirSampleNR = (iirSampleNR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleOL = (iirSampleOL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL;
+ iirSampleOR = (iirSampleOR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSamplePL = (iirSamplePL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL;
+ iirSamplePR = (iirSamplePR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleQL = (iirSampleQL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL;
+ iirSampleQR = (iirSampleQR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleRL = (iirSampleRL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL;
+ iirSampleRR = (iirSampleRR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleSL = (iirSampleSL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL;
+ iirSampleSR = (iirSampleSR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleTL = (iirSampleTL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL;
+ iirSampleTR = (iirSampleTR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleUL = (iirSampleUL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL;
+ iirSampleUR = (iirSampleUR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleVL = (iirSampleVL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL;
+ iirSampleVR = (iirSampleVR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleWL = (iirSampleWL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL;
+ iirSampleWR = (iirSampleWR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleXL = (iirSampleXL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL;
+ iirSampleXR = (iirSampleXR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleYL = (iirSampleYL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL;
+ iirSampleYR = (iirSampleYR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR;
+ inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ iirSampleZL = (iirSampleZL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL;
+ iirSampleZR = (iirSampleZR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR;
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //SubsOnly
+ break;
+ case 5:
+ case 6:
+ long double mid; mid = inputSampleL + inputSampleR;
+ long double side; side = inputSampleL - inputSampleR;
+ if (processing < 6) side = 0.0;
+ else mid = 0.0; //mono monitoring, or side-only monitoring
+ inputSampleL = (mid+side)/2.0;
+ inputSampleR = (mid-side)/2.0;
+ break;
+ case 7:
+ case 8:
+ case 9:
+ //Bandpass: changes in EQ are up in the variable defining, not here
+ inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double tempSampleL; tempSampleL = (inputSampleL * biquad[2]) + biquad[7];
+ biquad[7] = (-tempSampleL * biquad[5]) + biquad[8];
+ biquad[8] = (inputSampleL * biquad[4]) - (tempSampleL * biquad[6]);
+ inputSampleL = tempSampleL; //like mono AU, 7 and 8 store L channel
+
+ long double tempSampleR; tempSampleR = (inputSampleR * biquad[2]) + biquad[9];
+ biquad[9] = (-tempSampleR * biquad[5]) + biquad[10];
+ biquad[10] = (inputSampleR * biquad[4]) - (tempSampleR * biquad[6]);
+ inputSampleR = tempSampleR; //note: 9 and 10 store the R channel
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+ break;
+ case 10:
+ case 11:
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ long double drySampleL; drySampleL = inputSampleL;
+ long double drySampleR; drySampleR = inputSampleR; //everything runs 'inside' Console
+
+ allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am;
+ inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5;
+ ax--; if (ax < 0 || ax > am) {ax = am;}
+ inputSampleL += (aL[ax]);
+ inputSampleR += (aR[ax]);
+ //a single Midiverb-style allpass
+
+ if (processing == 10) {inputSampleL *= 0.125; inputSampleR *= 0.125;}
+ else {inputSampleL *= 0.25; inputSampleR *= 0.25;}
+ //Cans A suppresses the crossfeed more, Cans B makes it louder
+
+ drySampleL += inputSampleR;
+ drySampleR += inputSampleL; //the crossfeed
+
+ allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm;
+ inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5;
+ inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5;
+ dx--; if (dx < 0 || dx > dm) {dx = dm;}
+ inputSampleL += (dL[dx]);
+ inputSampleR += (dR[dx]);
+ //a single Midiverb-style allpass, which is stretching the previous one even more
+
+ if (processing == 10) {inputSampleL *= 0.5; inputSampleR *= 0.5;}
+ else {inputSampleL *= 0.25; inputSampleR *= 0.25;}
+ //Cans A already had crossfeeds down, bloom is louder. Cans B sits on bloom more
+
+ drySampleL += inputSampleL;
+ drySampleR += inputSampleR; //add the crossfeed and very faint extra verbyness
+
+ inputSampleL = drySampleL;
+ inputSampleR = drySampleR; //and output our can-opened headphone feed
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
+ if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
+ //ConsoleBuss processing
+ break;
+ }
+
+
+ //begin Not Just Another Dither
+ if (processing == 1) {
+ inputSampleL = inputSampleL * 32768.0; //or 16 bit option
+ inputSampleR = inputSampleR * 32768.0; //or 16 bit option
+ } else {
+ inputSampleL = inputSampleL * 8388608.0; //for literally everything else
+ inputSampleR = inputSampleR * 8388608.0; //we will apply the 24 bit NJAD
+ } //on the not unreasonable assumption that we are very likely playing back on 24 bit DAC
+ //if we're not, then all we did was apply a Benford Realness function at 24 bits down.
+
+ bool cutbinsL; cutbinsL = false;
+ bool cutbinsR; cutbinsR = false;
+ long double drySampleL; drySampleL = inputSampleL;
+ long double drySampleR; drySampleR = inputSampleR;
+ inputSampleL -= noiseShapingL;
+ inputSampleR -= noiseShapingR;
+ //NJAD L
+ long double benfordize; benfordize = floor(inputSampleL);
+ while (benfordize >= 1.0) benfordize /= 10;
+ while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
+ int hotbinA; hotbinA = floor(benfordize);
+ //hotbin becomes the Benford bin value for this number floored
+ long double totalA; totalA = 0;
+ if ((hotbinA > 0) && (hotbinA < 10))
+ {
+ bynL[hotbinA] += 1; if (bynL[hotbinA] > 982) cutbinsL = true;
+ totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]);
+ totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]);
+ totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1;
+ } else hotbinA = 10;
+ //produce total number- smaller is closer to Benford real
+ benfordize = ceil(inputSampleL);
+ while (benfordize >= 1.0) benfordize /= 10;
+ while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
+ int hotbinB; hotbinB = floor(benfordize);
+ //hotbin becomes the Benford bin value for this number ceiled
+ long double totalB; totalB = 0;
+ if ((hotbinB > 0) && (hotbinB < 10))
+ {
+ bynL[hotbinB] += 1; if (bynL[hotbinB] > 982) cutbinsL = true;
+ totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]);
+ totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]);
+ totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1;
+ } else hotbinB = 10;
+ //produce total number- smaller is closer to Benford real
+ long double outputSample;
+ if (totalA < totalB) {bynL[hotbinA] += 1; outputSample = floor(inputSampleL);}
+ else {bynL[hotbinB] += 1; outputSample = floor(inputSampleL+1);}
+ //assign the relevant one to the delay line
+ //and floor/ceil signal accordingly
+ if (cutbinsL) {
+ bynL[1] *= 0.99; bynL[2] *= 0.99; bynL[3] *= 0.99; bynL[4] *= 0.99; bynL[5] *= 0.99;
+ bynL[6] *= 0.99; bynL[7] *= 0.99; bynL[8] *= 0.99; bynL[9] *= 0.99; bynL[10] *= 0.99;
+ }
+ noiseShapingL += outputSample - drySampleL;
+ if (noiseShapingL > fabs(inputSampleL)) noiseShapingL = fabs(inputSampleL);
+ if (noiseShapingL < -fabs(inputSampleL)) noiseShapingL = -fabs(inputSampleL);
+ if (processing == 1) inputSampleL = outputSample / 32768.0;
+ else inputSampleL = outputSample / 8388608.0;
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ //finished NJAD L
+
+ //NJAD R
+ benfordize = floor(inputSampleR);
+ while (benfordize >= 1.0) benfordize /= 10;
+ while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
+ hotbinA = floor(benfordize);
+ //hotbin becomes the Benford bin value for this number floored
+ totalA = 0;
+ if ((hotbinA > 0) && (hotbinA < 10))
+ {
+ bynR[hotbinA] += 1; if (bynR[hotbinA] > 982) cutbinsR = true;
+ totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]);
+ totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]);
+ totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1;
+ } else hotbinA = 10;
+ //produce total number- smaller is closer to Benford real
+ benfordize = ceil(inputSampleR);
+ while (benfordize >= 1.0) benfordize /= 10;
+ while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
+ hotbinB = floor(benfordize);
+ //hotbin becomes the Benford bin value for this number ceiled
+ totalB = 0;
+ if ((hotbinB > 0) && (hotbinB < 10))
+ {
+ bynR[hotbinB] += 1; if (bynR[hotbinB] > 982) cutbinsR = true;
+ totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]);
+ totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]);
+ totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1;
+ } else hotbinB = 10;
+ //produce total number- smaller is closer to Benford real
+ if (totalA < totalB) {bynR[hotbinA] += 1; outputSample = floor(inputSampleR);}
+ else {bynR[hotbinB] += 1; outputSample = floor(inputSampleR+1);}
+ //assign the relevant one to the delay line
+ //and floor/ceil signal accordingly
+ if (cutbinsR) {
+ bynR[1] *= 0.99; bynR[2] *= 0.99; bynR[3] *= 0.99; bynR[4] *= 0.99; bynR[5] *= 0.99;
+ bynR[6] *= 0.99; bynR[7] *= 0.99; bynR[8] *= 0.99; bynR[9] *= 0.99; bynR[10] *= 0.99;
+ }
+ noiseShapingR += outputSample - drySampleR;
+ if (noiseShapingR > fabs(inputSampleR)) noiseShapingR = fabs(inputSampleR);
+ if (noiseShapingR < -fabs(inputSampleR)) noiseShapingR = -fabs(inputSampleR);
+ if (processing == 1) inputSampleR = outputSample / 32768.0;
+ else inputSampleR = outputSample / 8388608.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //finished NJAD R
+
+ //does not use 32 bit stereo floating point dither
+
+ *outputL = inputSampleL;
+ *outputR = inputSampleR;
+ //direct stereo out
+
+ inputL += 1;
+ inputR += 1;
+ outputL += 1;
+ outputR += 1;
+ }
+ return noErr;
+}
+