# Contains all the handlers and helper classes module ActiveSupport::Multibyte::Handlers #:nodoc: class EncodingError < ArgumentError #:nodoc: end class Codepoint #:nodoc: attr_accessor :code, :combining_class, :decomp_type, :decomp_mapping, :uppercase_mapping, :lowercase_mapping end class UnicodeDatabase #:nodoc: attr_writer :codepoints, :composition_exclusion, :composition_map, :boundary, :cp1252 # self-expiring methods that lazily load the Unicode database and then return the value. [:codepoints, :composition_exclusion, :composition_map, :boundary, :cp1252].each do |attr_name| class_eval(<<-EOS, __FILE__, __LINE__) def #{attr_name} load @#{attr_name} end EOS end # Shortcut to ucd.codepoints[] def [](index); codepoints[index]; end # Returns the directory in which the data files are stored def self.dirname File.dirname(__FILE__) + '/../../values/' end # Returns the filename for the data file for this version def self.filename File.expand_path File.join(dirname, "unicode_tables.dat") end # Loads the unicode database and returns all the internal objects of UnicodeDatabase # Once the values have been loaded, define attr_reader methods for the instance variables. def load begin @codepoints, @composition_exclusion, @composition_map, @boundary, @cp1252 = File.open(self.class.filename, 'rb') { |f| Marshal.load f.read } rescue Exception => e raise IOError.new("Couldn't load the unicode tables for UTF8Handler (#{e.message}), handler is unusable") end @codepoints ||= Hash.new(Codepoint.new) @composition_exclusion ||= [] @composition_map ||= {} @boundary ||= {} @cp1252 ||= {} # Redefine the === method so we can write shorter rules for grapheme cluster breaks @boundary.each do |k,_| @boundary[k].instance_eval do def ===(other) detect { |i| i === other } ? true : false end end if @boundary[k].kind_of?(Array) end # define attr_reader methods for the instance variables class << self attr_reader :codepoints, :composition_exclusion, :composition_map, :boundary, :cp1252 end end end # UTF8Handler implements Unicode aware operations for strings, these operations will be used by the Chars # proxy when $KCODE is set to 'UTF8'. class UTF8Handler # Hangul character boundaries and properties HANGUL_SBASE = 0xAC00 HANGUL_LBASE = 0x1100 HANGUL_VBASE = 0x1161 HANGUL_TBASE = 0x11A7 HANGUL_LCOUNT = 19 HANGUL_VCOUNT = 21 HANGUL_TCOUNT = 28 HANGUL_NCOUNT = HANGUL_VCOUNT * HANGUL_TCOUNT HANGUL_SCOUNT = 11172 HANGUL_SLAST = HANGUL_SBASE + HANGUL_SCOUNT HANGUL_JAMO_FIRST = 0x1100 HANGUL_JAMO_LAST = 0x11FF # All the unicode whitespace UNICODE_WHITESPACE = [ (0x0009..0x000D).to_a, # White_Space # Cc [5] .. 0x0020, # White_Space # Zs SPACE 0x0085, # White_Space # Cc 0x00A0, # White_Space # Zs NO-BREAK SPACE 0x1680, # White_Space # Zs OGHAM SPACE MARK 0x180E, # White_Space # Zs MONGOLIAN VOWEL SEPARATOR (0x2000..0x200A).to_a, # White_Space # Zs [11] EN QUAD..HAIR SPACE 0x2028, # White_Space # Zl LINE SEPARATOR 0x2029, # White_Space # Zp PARAGRAPH SEPARATOR 0x202F, # White_Space # Zs NARROW NO-BREAK SPACE 0x205F, # White_Space # Zs MEDIUM MATHEMATICAL SPACE 0x3000, # White_Space # Zs IDEOGRAPHIC SPACE ].flatten.freeze # BOM (byte order mark) can also be seen as whitespace, it's a non-rendering character used to distinguish # between little and big endian. This is not an issue in utf-8, so it must be ignored. UNICODE_LEADERS_AND_TRAILERS = UNICODE_WHITESPACE + [65279] # ZERO-WIDTH NO-BREAK SPACE aka BOM # Borrowed from the Kconv library by Shinji KONO - (also as seen on the W3C site) UTF8_PAT = /\A(?: [\x00-\x7f] | [\xc2-\xdf] [\x80-\xbf] | \xe0 [\xa0-\xbf] [\x80-\xbf] | [\xe1-\xef] [\x80-\xbf] [\x80-\xbf] | \xf0 [\x90-\xbf] [\x80-\xbf] [\x80-\xbf] | [\xf1-\xf3] [\x80-\xbf] [\x80-\xbf] [\x80-\xbf] | \xf4 [\x80-\x8f] [\x80-\xbf] [\x80-\xbf] )*\z/xn # Returns a regular expression pattern that matches the passed Unicode codepoints def self.codepoints_to_pattern(array_of_codepoints) #:nodoc: array_of_codepoints.collect{ |e| [e].pack 'U*' }.join('|') end UNICODE_TRAILERS_PAT = /(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+\Z/ UNICODE_LEADERS_PAT = /\A(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+/ class << self # /// # /// BEGIN String method overrides # /// # Inserts the passed string at specified codepoint offsets def insert(str, offset, fragment) str.replace( u_unpack(str).insert( offset, u_unpack(fragment) ).flatten.pack('U*') ) end # Returns the position of the passed argument in the string, counting in codepoints def index(str, *args) bidx = str.index(*args) bidx ? (u_unpack(str.slice(0...bidx)).size) : nil end # Works just like the indexed replace method on string, except instead of byte offsets you specify # character offsets. # # Example: # # s = "Müller" # s.chars[2] = "e" # Replace character with offset 2 # s # => "Müeler" # # s = "Müller" # s.chars[1, 2] = "ö" # Replace 2 characters at character offset 1 # s # => "Möler" def []=(str, *args) replace_by = args.pop # Indexed replace with regular expressions already works return str[*args] = replace_by if args.first.is_a?(Regexp) result = u_unpack(str) if args[0].is_a?(Fixnum) raise IndexError, "index #{args[0]} out of string" if args[0] >= result.length min = args[0] max = args[1].nil? ? min : (min + args[1] - 1) range = Range.new(min, max) replace_by = [replace_by].pack('U') if replace_by.is_a?(Fixnum) elsif args.first.is_a?(Range) raise RangeError, "#{args[0]} out of range" if args[0].min >= result.length range = args[0] else needle = args[0].to_s min = index(str, needle) max = min + length(needle) - 1 range = Range.new(min, max) end result[range] = u_unpack(replace_by) str.replace(result.pack('U*')) end # Works just like String#rjust, only integer specifies characters instead of bytes. # # Example: # # "¾ cup".chars.rjust(8).to_s # # => " ¾ cup" # # "¾ cup".chars.rjust(8, " ").to_s # Use non-breaking whitespace # # => "   ¾ cup" def rjust(str, integer, padstr=' ') justify(str, integer, :right, padstr) end # Works just like String#ljust, only integer specifies characters instead of bytes. # # Example: # # "¾ cup".chars.rjust(8).to_s # # => "¾ cup " # # "¾ cup".chars.rjust(8, " ").to_s # Use non-breaking whitespace # # => "¾ cup   " def ljust(str, integer, padstr=' ') justify(str, integer, :left, padstr) end # Works just like String#center, only integer specifies characters instead of bytes. # # Example: # # "¾ cup".chars.center(8).to_s # # => " ¾ cup " # # "¾ cup".chars.center(8, " ").to_s # Use non-breaking whitespace # # => " ¾ cup  " def center(str, integer, padstr=' ') justify(str, integer, :center, padstr) end # Does Unicode-aware rstrip def rstrip(str) str.gsub(UNICODE_TRAILERS_PAT, '') end # Does Unicode-aware lstrip def lstrip(str) str.gsub(UNICODE_LEADERS_PAT, '') end # Removed leading and trailing whitespace def strip(str) str.gsub(UNICODE_LEADERS_PAT, '').gsub(UNICODE_TRAILERS_PAT, '') end # Returns the number of codepoints in the string def size(str) u_unpack(str).size end alias_method :length, :size # Reverses codepoints in the string. def reverse(str) u_unpack(str).reverse.pack('U*') end # Implements Unicode-aware slice with codepoints. Slicing on one point returns the codepoints for that # character. def slice(str, *args) if args.size > 2 raise ArgumentError, "wrong number of arguments (#{args.size} for 1)" # Do as if we were native elsif (args.size == 2 && !(args.first.is_a?(Numeric) || args.first.is_a?(Regexp))) raise TypeError, "cannot convert #{args.first.class} into Integer" # Do as if we were native elsif (args.size == 2 && !args[1].is_a?(Numeric)) raise TypeError, "cannot convert #{args[1].class} into Integer" # Do as if we were native elsif args[0].kind_of? Range cps = u_unpack(str).slice(*args) cps.nil? ? nil : cps.pack('U*') elsif args[0].kind_of? Regexp str.slice(*args) elsif args.size == 1 && args[0].kind_of?(Numeric) u_unpack(str)[args[0]] else u_unpack(str).slice(*args).pack('U*') end end alias_method :[], :slice # Convert characters in the string to uppercase def upcase(str); to_case :uppercase_mapping, str; end # Convert characters in the string to lowercase def downcase(str); to_case :lowercase_mapping, str; end # Returns a copy of +str+ with the first character converted to uppercase and the remainder to lowercase def capitalize(str) upcase(slice(str, 0..0)) + downcase(slice(str, 1..-1) || '') end # /// # /// Extra String methods for unicode operations # /// # Returns the KC normalization of the string by default. NFKC is considered the best normalization form for # passing strings to databases and validations. # # * str - The string to perform normalization on. # * form - The form you want to normalize in. Should be one of the following: # :c, :kc, :d, or :kd. Default is # ActiveSupport::Multibyte::DEFAULT_NORMALIZATION_FORM. def normalize(str, form=ActiveSupport::Multibyte::DEFAULT_NORMALIZATION_FORM) # See http://www.unicode.org/reports/tr15, Table 1 codepoints = u_unpack(str) case form when :d reorder_characters(decompose_codepoints(:canonical, codepoints)) when :c compose_codepoints reorder_characters(decompose_codepoints(:canonical, codepoints)) when :kd reorder_characters(decompose_codepoints(:compatability, codepoints)) when :kc compose_codepoints reorder_characters(decompose_codepoints(:compatability, codepoints)) else raise ArgumentError, "#{form} is not a valid normalization variant", caller end.pack('U*') end # Perform decomposition on the characters in the string def decompose(str) decompose_codepoints(:canonical, u_unpack(str)).pack('U*') end # Perform composition on the characters in the string def compose(str) compose_codepoints u_unpack(str).pack('U*') end # /// # /// BEGIN Helper methods for unicode operation # /// # Used to translate an offset from bytes to characters, for instance one received from a regular expression match def translate_offset(str, byte_offset) return nil if byte_offset.nil? return 0 if str == '' chunk = str[0..byte_offset] begin begin chunk.unpack('U*').length - 1 rescue ArgumentError => e chunk = str[0..(byte_offset+=1)] # Stop retrying at the end of the string raise e unless byte_offset < chunk.length # We damaged a character, retry retry end # Catch the ArgumentError so we can throw our own rescue ArgumentError raise EncodingError.new('malformed UTF-8 character') end end # Checks if the string is valid UTF8. def consumes?(str) # Unpack is a little bit faster than regular expressions begin str.unpack('U*') true rescue ArgumentError false end end # Returns the number of grapheme clusters in the string. This method is very likely to be moved or renamed # in future versions. def g_length(str) g_unpack(str).length end # Replaces all the non-utf-8 bytes by their iso-8859-1 or cp1252 equivalent resulting in a valid utf-8 string def tidy_bytes(str) str.split(//u).map do |c| if !UTF8_PAT.match(c) n = c.unpack('C')[0] n < 128 ? n.chr : n < 160 ? [UCD.cp1252[n] || n].pack('U') : n < 192 ? "\xC2" + n.chr : "\xC3" + (n-64).chr else c end end.join end protected # Detect whether the codepoint is in a certain character class. Primarily used by the # grapheme cluster support. def in_char_class?(codepoint, classes) classes.detect { |c| UCD.boundary[c] === codepoint } ? true : false end # Unpack the string at codepoints boundaries def u_unpack(str) begin str.unpack 'U*' rescue ArgumentError raise EncodingError.new('malformed UTF-8 character') end end # Unpack the string at grapheme boundaries instead of codepoint boundaries def g_unpack(str) codepoints = u_unpack(str) unpacked = [] pos = 0 marker = 0 eoc = codepoints.length while(pos < eoc) pos += 1 previous = codepoints[pos-1] current = codepoints[pos] if ( # CR X LF one = ( previous == UCD.boundary[:cr] and current == UCD.boundary[:lf] ) or # L X (L|V|LV|LVT) two = ( UCD.boundary[:l] === previous and in_char_class?(current, [:l,:v,:lv,:lvt]) ) or # (LV|V) X (V|T) three = ( in_char_class?(previous, [:lv,:v]) and in_char_class?(current, [:v,:t]) ) or # (LVT|T) X (T) four = ( in_char_class?(previous, [:lvt,:t]) and UCD.boundary[:t] === current ) or # X Extend five = (UCD.boundary[:extend] === current) ) else unpacked << codepoints[marker..pos-1] marker = pos end end unpacked end # Reverse operation of g_unpack def g_pack(unpacked) unpacked.flatten end # Justifies a string in a certain way. Valid values for way are :right, :left and # :center. Is primarily used as a helper method by rjust, ljust and center. def justify(str, integer, way, padstr=' ') raise ArgumentError, "zero width padding" if padstr.length == 0 padsize = integer - size(str) padsize = padsize > 0 ? padsize : 0 case way when :right str.dup.insert(0, padding(padsize, padstr)) when :left str.dup.insert(-1, padding(padsize, padstr)) when :center lpad = padding((padsize / 2.0).floor, padstr) rpad = padding((padsize / 2.0).ceil, padstr) str.dup.insert(0, lpad).insert(-1, rpad) end end # Generates a padding string of a certain size. def padding(padsize, padstr=' ') if padsize != 0 slice(padstr * ((padsize / size(padstr)) + 1), 0, padsize) else '' end end # Convert characters to a different case def to_case(way, str) u_unpack(str).map do |codepoint| cp = UCD[codepoint] unless cp.nil? ncp = cp.send(way) ncp > 0 ? ncp : codepoint else codepoint end end.pack('U*') end # Re-order codepoints so the string becomes canonical def reorder_characters(codepoints) length = codepoints.length- 1 pos = 0 while pos < length do cp1, cp2 = UCD[codepoints[pos]], UCD[codepoints[pos+1]] if (cp1.combining_class > cp2.combining_class) && (cp2.combining_class > 0) codepoints[pos..pos+1] = cp2.code, cp1.code pos += (pos > 0 ? -1 : 1) else pos += 1 end end codepoints end # Decompose composed characters to the decomposed form def decompose_codepoints(type, codepoints) codepoints.inject([]) do |decomposed, cp| # if it's a hangul syllable starter character if HANGUL_SBASE <= cp and cp < HANGUL_SLAST sindex = cp - HANGUL_SBASE ncp = [] # new codepoints ncp << HANGUL_LBASE + sindex / HANGUL_NCOUNT ncp << HANGUL_VBASE + (sindex % HANGUL_NCOUNT) / HANGUL_TCOUNT tindex = sindex % HANGUL_TCOUNT ncp << (HANGUL_TBASE + tindex) unless tindex == 0 decomposed.concat ncp # if the codepoint is decomposable in with the current decomposition type elsif (ncp = UCD[cp].decomp_mapping) and (!UCD[cp].decomp_type || type == :compatability) decomposed.concat decompose_codepoints(type, ncp.dup) else decomposed << cp end end end # Compose decomposed characters to the composed form def compose_codepoints(codepoints) pos = 0 eoa = codepoints.length - 1 starter_pos = 0 starter_char = codepoints[0] previous_combining_class = -1 while pos < eoa pos += 1 lindex = starter_char - HANGUL_LBASE # -- Hangul if 0 <= lindex and lindex < HANGUL_LCOUNT vindex = codepoints[starter_pos+1] - HANGUL_VBASE rescue vindex = -1 if 0 <= vindex and vindex < HANGUL_VCOUNT tindex = codepoints[starter_pos+2] - HANGUL_TBASE rescue tindex = -1 if 0 <= tindex and tindex < HANGUL_TCOUNT j = starter_pos + 2 eoa -= 2 else tindex = 0 j = starter_pos + 1 eoa -= 1 end codepoints[starter_pos..j] = (lindex * HANGUL_VCOUNT + vindex) * HANGUL_TCOUNT + tindex + HANGUL_SBASE end starter_pos += 1 starter_char = codepoints[starter_pos] # -- Other characters else current_char = codepoints[pos] current = UCD[current_char] if current.combining_class > previous_combining_class if ref = UCD.composition_map[starter_char] composition = ref[current_char] else composition = nil end unless composition.nil? codepoints[starter_pos] = composition starter_char = composition codepoints.delete_at pos eoa -= 1 pos -= 1 previous_combining_class = -1 else previous_combining_class = current.combining_class end else previous_combining_class = current.combining_class end if current.combining_class == 0 starter_pos = pos starter_char = codepoints[pos] end end end codepoints end # UniCode Database UCD = UnicodeDatabase.new end end end