require 'active_support/core_ext/hash/indifferent_access' require 'active_support/core_ext/object/duplicable' require 'thread' module ActiveRecord module Core extend ActiveSupport::Concern included do ## # :singleton-method: # # Accepts a logger conforming to the interface of Log4r which is then # passed on to any new database connections made and which can be # retrieved on both a class and instance level by calling +logger+. mattr_accessor :logger, instance_writer: false ## # :singleton-method: # Contains the database configuration - as is typically stored in config/database.yml - # as a Hash. # # For example, the following database.yml... # # development: # adapter: sqlite3 # database: db/development.sqlite3 # # production: # adapter: sqlite3 # database: db/production.sqlite3 # # ...would result in ActiveRecord::Base.configurations to look like this: # # { # 'development' => { # 'adapter' => 'sqlite3', # 'database' => 'db/development.sqlite3' # }, # 'production' => { # 'adapter' => 'sqlite3', # 'database' => 'db/production.sqlite3' # } # } mattr_accessor :configurations, instance_writer: false self.configurations = {} ## # :singleton-method: # Determines whether to use Time.utc (using :utc) or Time.local (using :local) when pulling # dates and times from the database. This is set to :utc by default. mattr_accessor :default_timezone, instance_writer: false self.default_timezone = :utc ## # :singleton-method: # Specifies the format to use when dumping the database schema with Rails' # Rakefile. If :sql, the schema is dumped as (potentially database- # specific) SQL statements. If :ruby, the schema is dumped as an # ActiveRecord::Schema file which can be loaded into any database that # supports migrations. Use :ruby if you want to have different database # adapters for, e.g., your development and test environments. mattr_accessor :schema_format, instance_writer: false self.schema_format = :ruby ## # :singleton-method: # Specify whether or not to use timestamps for migration versions mattr_accessor :timestamped_migrations, instance_writer: false self.timestamped_migrations = true ## # :singleton-method: # Disable implicit join references. This feature was deprecated with Rails 4. # If you don't make use of implicit references but still see deprecation warnings # you can disable the feature entirely. This will be the default with Rails 4.1. mattr_accessor :disable_implicit_join_references, instance_writer: false self.disable_implicit_join_references = false class_attribute :default_connection_handler, instance_writer: false def self.connection_handler Thread.current[:active_record_connection_handler] || self.default_connection_handler end def self.connection_handler=(handler) Thread.current[:active_record_connection_handler] = handler end self.default_connection_handler = ConnectionAdapters::ConnectionHandler.new end module ClassMethods def inherited(child_class) #:nodoc: child_class.initialize_generated_modules super end def initialize_generated_modules @attribute_methods_mutex = Mutex.new # force attribute methods to be higher in inheritance hierarchy than other generated methods generated_attribute_methods.const_set(:AttrNames, Module.new { def self.const_missing(name) const_set(name, [name.to_s.sub(/ATTR_/, '')].pack('h*').freeze) end }) generated_feature_methods end def generated_feature_methods @generated_feature_methods ||= begin mod = const_set(:GeneratedFeatureMethods, Module.new) include mod mod end end # Returns a string like 'Post(id:integer, title:string, body:text)' def inspect if self == Base super elsif abstract_class? "#{super}(abstract)" elsif table_exists? attr_list = columns.map { |c| "#{c.name}: #{c.type}" } * ', ' "#{super}(#{attr_list})" else "#{super}(Table doesn't exist)" end end # Overwrite the default class equality method to provide support for association proxies. def ===(object) object.is_a?(self) end # Returns an instance of Arel::Table loaded with the current table name. # # class Post < ActiveRecord::Base # scope :published_and_commented, published.and(self.arel_table[:comments_count].gt(0)) # end def arel_table @arel_table ||= Arel::Table.new(table_name, arel_engine) end # Returns the Arel engine. def arel_engine @arel_engine ||= begin if Base == self || connection_handler.retrieve_connection_pool(self) self else superclass.arel_engine end end end private def relation #:nodoc: relation = Relation.new(self, arel_table) if finder_needs_type_condition? relation.where(type_condition).create_with(inheritance_column.to_sym => sti_name) else relation end end end # New objects can be instantiated as either empty (pass no construction parameter) or pre-set with # attributes but not yet saved (pass a hash with key names matching the associated table column names). # In both instances, valid attribute keys are determined by the column names of the associated table -- # hence you can't have attributes that aren't part of the table columns. # # ==== Example: # # Instantiates a single new object # User.new(first_name: 'Jamie') def initialize(attributes = nil) defaults = self.class.column_defaults.dup defaults.each { |k, v| defaults[k] = v.dup if v.duplicable? } @attributes = self.class.initialize_attributes(defaults) @columns_hash = self.class.column_types.dup init_internals init_changed_attributes ensure_proper_type populate_with_current_scope_attributes assign_attributes(attributes) if attributes yield self if block_given? run_callbacks :initialize unless _initialize_callbacks.empty? end # Initialize an empty model object from +coder+. +coder+ must contain # the attributes necessary for initializing an empty model object. For # example: # # class Post < ActiveRecord::Base # end # # post = Post.allocate # post.init_with('attributes' => { 'title' => 'hello world' }) # post.title # => 'hello world' def init_with(coder) @attributes = self.class.initialize_attributes(coder['attributes']) @columns_hash = self.class.column_types.merge(coder['column_types'] || {}) init_internals @new_record = false run_callbacks :find run_callbacks :initialize self end ## # :method: clone # Identical to Ruby's clone method. This is a "shallow" copy. Be warned that your attributes are not copied. # That means that modifying attributes of the clone will modify the original, since they will both point to the # same attributes hash. If you need a copy of your attributes hash, please use the #dup method. # # user = User.first # new_user = user.clone # user.name # => "Bob" # new_user.name = "Joe" # user.name # => "Joe" # # user.object_id == new_user.object_id # => false # user.name.object_id == new_user.name.object_id # => true # # user.name.object_id == user.dup.name.object_id # => false ## # :method: dup # Duped objects have no id assigned and are treated as new records. Note # that this is a "shallow" copy as it copies the object's attributes # only, not its associations. The extent of a "deep" copy is application # specific and is therefore left to the application to implement according # to its need. # The dup method does not preserve the timestamps (created|updated)_(at|on). ## def initialize_dup(other) # :nodoc: cloned_attributes = other.clone_attributes(:read_attribute_before_type_cast) self.class.initialize_attributes(cloned_attributes, :serialized => false) @attributes = cloned_attributes @attributes[self.class.primary_key] = nil run_callbacks(:initialize) unless _initialize_callbacks.empty? @changed_attributes = {} init_changed_attributes @aggregation_cache = {} @association_cache = {} @attributes_cache = {} @new_record = true ensure_proper_type super end # Populate +coder+ with attributes about this record that should be # serialized. The structure of +coder+ defined in this method is # guaranteed to match the structure of +coder+ passed to the +init_with+ # method. # # Example: # # class Post < ActiveRecord::Base # end # coder = {} # Post.new.encode_with(coder) # coder # => {"attributes" => {"id" => nil, ... }} def encode_with(coder) coder['attributes'] = attributes end # Returns true if +comparison_object+ is the same exact object, or +comparison_object+ # is of the same type and +self+ has an ID and it is equal to +comparison_object.id+. # # Note that new records are different from any other record by definition, unless the # other record is the receiver itself. Besides, if you fetch existing records with # +select+ and leave the ID out, you're on your own, this predicate will return false. # # Note also that destroying a record preserves its ID in the model instance, so deleted # models are still comparable. def ==(comparison_object) super || comparison_object.instance_of?(self.class) && id.present? && comparison_object.id == id end alias :eql? :== # Delegates to id in order to allow two records of the same type and id to work with something like: # [ Person.find(1), Person.find(2), Person.find(3) ] & [ Person.find(1), Person.find(4) ] # => [ Person.find(1) ] def hash id.hash end # Freeze the attributes hash such that associations are still accessible, even on destroyed records. def freeze @attributes.freeze self end # Returns +true+ if the attributes hash has been frozen. def frozen? @attributes.frozen? end # Allows sort on objects def <=>(other_object) if other_object.is_a?(self.class) self.to_key <=> other_object.to_key end end # Returns +true+ if the record is read only. Records loaded through joins with piggy-back # attributes will be marked as read only since they cannot be saved. def readonly? @readonly end # Marks this record as read only. def readonly! @readonly = true end # Returns the connection currently associated with the class. This can # also be used to "borrow" the connection to do database work that isn't # easily done without going straight to SQL. def connection ActiveSupport::Deprecation.warn("#connection is deprecated in favour of accessing it via the class") self.class.connection end def connection_handler self.class.connection_handler end # Returns the contents of the record as a nicely formatted string. def inspect inspection = if @attributes self.class.column_names.collect { |name| if has_attribute?(name) "#{name}: #{attribute_for_inspect(name)}" end }.compact.join(", ") else "not initialized" end "#<#{self.class} #{inspection}>" end # Returns a hash of the given methods with their names as keys and returned values as values. def slice(*methods) Hash[methods.map { |method| [method, public_send(method)] }].with_indifferent_access end def set_transaction_state(state) # :nodoc: @transaction_state = state end def has_transactional_callbacks? # :nodoc: !_rollback_callbacks.empty? || !_commit_callbacks.empty? || !_create_callbacks.empty? end private # Updates the attributes on this particular ActiveRecord object so that # if it is associated with a transaction, then the state of the AR object # will be updated to reflect the current state of the transaction # # The @transaction_state variable stores the states of the associated # transaction. This relies on the fact that a transaction can only be in # one rollback or commit (otherwise a list of states would be required) # Each AR object inside of a transaction carries that transaction's # TransactionState. # # This method checks to see if the ActiveRecord object's state reflects # the TransactionState, and rolls back or commits the ActiveRecord object # as appropriate. # # Since ActiveRecord objects can be inside multiple transactions, this # method recursively goes through the parent of the TransactionState and # checks if the ActiveRecord object reflects the state of the object. def sync_with_transaction_state update_attributes_from_transaction_state(@transaction_state, 0) end def update_attributes_from_transaction_state(transaction_state, depth) if transaction_state && !has_transactional_callbacks? unless @reflects_state[depth] if transaction_state.committed? committed! elsif transaction_state.rolledback? rolledback! end @reflects_state[depth] = true end if transaction_state.parent && !@reflects_state[depth+1] update_attributes_from_transaction_state(transaction_state.parent, depth+1) end end end # Under Ruby 1.9, Array#flatten will call #to_ary (recursively) on each of the elements # of the array, and then rescues from the possible NoMethodError. If those elements are # ActiveRecord::Base's, then this triggers the various method_missing's that we have, # which significantly impacts upon performance. # # So we can avoid the method_missing hit by explicitly defining #to_ary as nil here. # # See also http://tenderlovemaking.com/2011/06/28/til-its-ok-to-return-nil-from-to_ary.html def to_ary # :nodoc: nil end def init_internals pk = self.class.primary_key @attributes[pk] = nil unless @attributes.key?(pk) @aggregation_cache = {} @association_cache = {} @attributes_cache = {} @previously_changed = {} @changed_attributes = {} @readonly = false @destroyed = false @marked_for_destruction = false @destroyed_by_association = nil @new_record = true @txn = nil @_start_transaction_state = {} @transaction_state = nil @reflects_state = [false] end def init_changed_attributes # Intentionally avoid using #column_defaults since overridden defaults (as is done in # optimistic locking) won't get written unless they get marked as changed self.class.columns.each do |c| attr, orig_value = c.name, c.default @changed_attributes[attr] = orig_value if _field_changed?(attr, orig_value, @attributes[attr]) end end end end