From f4bb7bcbff3770387c2fecfa91ce4a60b916a474 Mon Sep 17 00:00:00 2001 From: Mario Date: Fri, 27 Nov 2020 08:04:00 +0000 Subject: update composer libs --- vendor/brick/math/src/BigDecimal.php | 855 +++++++++++++++ vendor/brick/math/src/BigInteger.php | 1134 ++++++++++++++++++++ vendor/brick/math/src/BigNumber.php | 566 ++++++++++ vendor/brick/math/src/BigRational.php | 479 +++++++++ .../math/src/Exception/DivisionByZeroException.php | 41 + .../src/Exception/IntegerOverflowException.php | 27 + vendor/brick/math/src/Exception/MathException.php | 14 + .../math/src/Exception/NegativeNumberException.php | 12 + .../math/src/Exception/NumberFormatException.php | 35 + .../src/Exception/RoundingNecessaryException.php | 21 + vendor/brick/math/src/Internal/Calculator.php | 756 +++++++++++++ .../src/Internal/Calculator/BcMathCalculator.php | 92 ++ .../math/src/Internal/Calculator/GmpCalculator.php | 156 +++ .../src/Internal/Calculator/NativeCalculator.php | 616 +++++++++++ vendor/brick/math/src/RoundingMode.php | 107 ++ 15 files changed, 4911 insertions(+) create mode 100644 vendor/brick/math/src/BigDecimal.php create mode 100644 vendor/brick/math/src/BigInteger.php create mode 100644 vendor/brick/math/src/BigNumber.php create mode 100644 vendor/brick/math/src/BigRational.php create mode 100644 vendor/brick/math/src/Exception/DivisionByZeroException.php create mode 100644 vendor/brick/math/src/Exception/IntegerOverflowException.php create mode 100644 vendor/brick/math/src/Exception/MathException.php create mode 100644 vendor/brick/math/src/Exception/NegativeNumberException.php create mode 100644 vendor/brick/math/src/Exception/NumberFormatException.php create mode 100644 vendor/brick/math/src/Exception/RoundingNecessaryException.php create mode 100644 vendor/brick/math/src/Internal/Calculator.php create mode 100644 vendor/brick/math/src/Internal/Calculator/BcMathCalculator.php create mode 100644 vendor/brick/math/src/Internal/Calculator/GmpCalculator.php create mode 100644 vendor/brick/math/src/Internal/Calculator/NativeCalculator.php create mode 100644 vendor/brick/math/src/RoundingMode.php (limited to 'vendor/brick/math/src') diff --git a/vendor/brick/math/src/BigDecimal.php b/vendor/brick/math/src/BigDecimal.php new file mode 100644 index 000000000..287177140 --- /dev/null +++ b/vendor/brick/math/src/BigDecimal.php @@ -0,0 +1,855 @@ +value = $value; + $this->scale = $scale; + } + + /** + * Creates a BigDecimal of the given value. + * + * @param BigNumber|int|float|string $value + * + * @return BigDecimal + * + * @throws MathException If the value cannot be converted to a BigDecimal. + * + * @psalm-pure + */ + public static function of($value) : BigNumber + { + return parent::of($value)->toBigDecimal(); + } + + /** + * Creates a BigDecimal from an unscaled value and a scale. + * + * Example: `(12345, 3)` will result in the BigDecimal `12.345`. + * + * @param BigNumber|int|float|string $value The unscaled value. Must be convertible to a BigInteger. + * @param int $scale The scale of the number, positive or zero. + * + * @return BigDecimal + * + * @throws \InvalidArgumentException If the scale is negative. + * + * @psalm-pure + */ + public static function ofUnscaledValue($value, int $scale = 0) : BigDecimal + { + if ($scale < 0) { + throw new \InvalidArgumentException('The scale cannot be negative.'); + } + + return new BigDecimal((string) BigInteger::of($value), $scale); + } + + /** + * Returns a BigDecimal representing zero, with a scale of zero. + * + * @return BigDecimal + * + * @psalm-pure + */ + public static function zero() : BigDecimal + { + /** @psalm-suppress ImpureStaticVariable */ + static $zero; + + if ($zero === null) { + $zero = new BigDecimal('0'); + } + + return $zero; + } + + /** + * Returns a BigDecimal representing one, with a scale of zero. + * + * @return BigDecimal + * + * @psalm-pure + */ + public static function one() : BigDecimal + { + /** @psalm-suppress ImpureStaticVariable */ + static $one; + + if ($one === null) { + $one = new BigDecimal('1'); + } + + return $one; + } + + /** + * Returns a BigDecimal representing ten, with a scale of zero. + * + * @return BigDecimal + * + * @psalm-pure + */ + public static function ten() : BigDecimal + { + /** @psalm-suppress ImpureStaticVariable */ + static $ten; + + if ($ten === null) { + $ten = new BigDecimal('10'); + } + + return $ten; + } + + /** + * Returns the sum of this number and the given one. + * + * The result has a scale of `max($this->scale, $that->scale)`. + * + * @param BigNumber|int|float|string $that The number to add. Must be convertible to a BigDecimal. + * + * @return BigDecimal The result. + * + * @throws MathException If the number is not valid, or is not convertible to a BigDecimal. + */ + public function plus($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->value === '0' && $that->scale <= $this->scale) { + return $this; + } + + if ($this->value === '0' && $this->scale <= $that->scale) { + return $that; + } + + [$a, $b] = $this->scaleValues($this, $that); + + $value = Calculator::get()->add($a, $b); + $scale = $this->scale > $that->scale ? $this->scale : $that->scale; + + return new BigDecimal($value, $scale); + } + + /** + * Returns the difference of this number and the given one. + * + * The result has a scale of `max($this->scale, $that->scale)`. + * + * @param BigNumber|int|float|string $that The number to subtract. Must be convertible to a BigDecimal. + * + * @return BigDecimal The result. + * + * @throws MathException If the number is not valid, or is not convertible to a BigDecimal. + */ + public function minus($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->value === '0' && $that->scale <= $this->scale) { + return $this; + } + + [$a, $b] = $this->scaleValues($this, $that); + + $value = Calculator::get()->sub($a, $b); + $scale = $this->scale > $that->scale ? $this->scale : $that->scale; + + return new BigDecimal($value, $scale); + } + + /** + * Returns the product of this number and the given one. + * + * The result has a scale of `$this->scale + $that->scale`. + * + * @param BigNumber|int|float|string $that The multiplier. Must be convertible to a BigDecimal. + * + * @return BigDecimal The result. + * + * @throws MathException If the multiplier is not a valid number, or is not convertible to a BigDecimal. + */ + public function multipliedBy($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->value === '1' && $that->scale === 0) { + return $this; + } + + if ($this->value === '1' && $this->scale === 0) { + return $that; + } + + $value = Calculator::get()->mul($this->value, $that->value); + $scale = $this->scale + $that->scale; + + return new BigDecimal($value, $scale); + } + + /** + * Returns the result of the division of this number by the given one, at the given scale. + * + * @param BigNumber|int|float|string $that The divisor. + * @param int|null $scale The desired scale, or null to use the scale of this number. + * @param int $roundingMode An optional rounding mode. + * + * @return BigDecimal + * + * @throws \InvalidArgumentException If the scale or rounding mode is invalid. + * @throws MathException If the number is invalid, is zero, or rounding was necessary. + */ + public function dividedBy($that, ?int $scale = null, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->isZero()) { + throw DivisionByZeroException::divisionByZero(); + } + + if ($scale === null) { + $scale = $this->scale; + } elseif ($scale < 0) { + throw new \InvalidArgumentException('Scale cannot be negative.'); + } + + if ($that->value === '1' && $that->scale === 0 && $scale === $this->scale) { + return $this; + } + + $p = $this->valueWithMinScale($that->scale + $scale); + $q = $that->valueWithMinScale($this->scale - $scale); + + $result = Calculator::get()->divRound($p, $q, $roundingMode); + + return new BigDecimal($result, $scale); + } + + /** + * Returns the exact result of the division of this number by the given one. + * + * The scale of the result is automatically calculated to fit all the fraction digits. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. + * + * @return BigDecimal The result. + * + * @throws MathException If the divisor is not a valid number, is not convertible to a BigDecimal, is zero, + * or the result yields an infinite number of digits. + */ + public function exactlyDividedBy($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->value === '0') { + throw DivisionByZeroException::divisionByZero(); + } + + [, $b] = $this->scaleValues($this, $that); + + $d = \rtrim($b, '0'); + $scale = \strlen($b) - \strlen($d); + + $calculator = Calculator::get(); + + foreach ([5, 2] as $prime) { + for (;;) { + $lastDigit = (int) $d[-1]; + + if ($lastDigit % $prime !== 0) { + break; + } + + $d = $calculator->divQ($d, (string) $prime); + $scale++; + } + } + + return $this->dividedBy($that, $scale)->stripTrailingZeros(); + } + + /** + * Returns this number exponentiated to the given value. + * + * The result has a scale of `$this->scale * $exponent`. + * + * @param int $exponent The exponent. + * + * @return BigDecimal The result. + * + * @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000. + */ + public function power(int $exponent) : BigDecimal + { + if ($exponent === 0) { + return BigDecimal::one(); + } + + if ($exponent === 1) { + return $this; + } + + if ($exponent < 0 || $exponent > Calculator::MAX_POWER) { + throw new \InvalidArgumentException(\sprintf( + 'The exponent %d is not in the range 0 to %d.', + $exponent, + Calculator::MAX_POWER + )); + } + + return new BigDecimal(Calculator::get()->pow($this->value, $exponent), $this->scale * $exponent); + } + + /** + * Returns the quotient of the division of this number by this given one. + * + * The quotient has a scale of `0`. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. + * + * @return BigDecimal The quotient. + * + * @throws MathException If the divisor is not a valid decimal number, or is zero. + */ + public function quotient($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->isZero()) { + throw DivisionByZeroException::divisionByZero(); + } + + $p = $this->valueWithMinScale($that->scale); + $q = $that->valueWithMinScale($this->scale); + + $quotient = Calculator::get()->divQ($p, $q); + + return new BigDecimal($quotient, 0); + } + + /** + * Returns the remainder of the division of this number by this given one. + * + * The remainder has a scale of `max($this->scale, $that->scale)`. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. + * + * @return BigDecimal The remainder. + * + * @throws MathException If the divisor is not a valid decimal number, or is zero. + */ + public function remainder($that) : BigDecimal + { + $that = BigDecimal::of($that); + + if ($that->isZero()) { + throw DivisionByZeroException::divisionByZero(); + } + + $p = $this->valueWithMinScale($that->scale); + $q = $that->valueWithMinScale($this->scale); + + $remainder = Calculator::get()->divR($p, $q); + + $scale = $this->scale > $that->scale ? $this->scale : $that->scale; + + return new BigDecimal($remainder, $scale); + } + + /** + * Returns the quotient and remainder of the division of this number by the given one. + * + * The quotient has a scale of `0`, and the remainder has a scale of `max($this->scale, $that->scale)`. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. + * + * @return BigDecimal[] An array containing the quotient and the remainder. + * + * @throws MathException If the divisor is not a valid decimal number, or is zero. + */ + public function quotientAndRemainder($that) : array + { + $that = BigDecimal::of($that); + + if ($that->isZero()) { + throw DivisionByZeroException::divisionByZero(); + } + + $p = $this->valueWithMinScale($that->scale); + $q = $that->valueWithMinScale($this->scale); + + [$quotient, $remainder] = Calculator::get()->divQR($p, $q); + + $scale = $this->scale > $that->scale ? $this->scale : $that->scale; + + $quotient = new BigDecimal($quotient, 0); + $remainder = new BigDecimal($remainder, $scale); + + return [$quotient, $remainder]; + } + + /** + * Returns the square root of this number, rounded down to the given number of decimals. + * + * @param int $scale + * + * @return BigDecimal + * + * @throws \InvalidArgumentException If the scale is negative. + * @throws NegativeNumberException If this number is negative. + */ + public function sqrt(int $scale) : BigDecimal + { + if ($scale < 0) { + throw new \InvalidArgumentException('Scale cannot be negative.'); + } + + if ($this->value === '0') { + return new BigDecimal('0', $scale); + } + + if ($this->value[0] === '-') { + throw new NegativeNumberException('Cannot calculate the square root of a negative number.'); + } + + $value = $this->value; + $addDigits = 2 * $scale - $this->scale; + + if ($addDigits > 0) { + // add zeros + $value .= \str_repeat('0', $addDigits); + } elseif ($addDigits < 0) { + // trim digits + if (-$addDigits >= \strlen($this->value)) { + // requesting a scale too low, will always yield a zero result + return new BigDecimal('0', $scale); + } + + $value = \substr($value, 0, $addDigits); + } + + $value = Calculator::get()->sqrt($value); + + return new BigDecimal($value, $scale); + } + + /** + * Returns a copy of this BigDecimal with the decimal point moved $n places to the left. + * + * @param int $n + * + * @return BigDecimal + */ + public function withPointMovedLeft(int $n) : BigDecimal + { + if ($n === 0) { + return $this; + } + + if ($n < 0) { + return $this->withPointMovedRight(-$n); + } + + return new BigDecimal($this->value, $this->scale + $n); + } + + /** + * Returns a copy of this BigDecimal with the decimal point moved $n places to the right. + * + * @param int $n + * + * @return BigDecimal + */ + public function withPointMovedRight(int $n) : BigDecimal + { + if ($n === 0) { + return $this; + } + + if ($n < 0) { + return $this->withPointMovedLeft(-$n); + } + + $value = $this->value; + $scale = $this->scale - $n; + + if ($scale < 0) { + if ($value !== '0') { + $value .= \str_repeat('0', -$scale); + } + $scale = 0; + } + + return new BigDecimal($value, $scale); + } + + /** + * Returns a copy of this BigDecimal with any trailing zeros removed from the fractional part. + * + * @return BigDecimal + */ + public function stripTrailingZeros() : BigDecimal + { + if ($this->scale === 0) { + return $this; + } + + $trimmedValue = \rtrim($this->value, '0'); + + if ($trimmedValue === '') { + return BigDecimal::zero(); + } + + $trimmableZeros = \strlen($this->value) - \strlen($trimmedValue); + + if ($trimmableZeros === 0) { + return $this; + } + + if ($trimmableZeros > $this->scale) { + $trimmableZeros = $this->scale; + } + + $value = \substr($this->value, 0, -$trimmableZeros); + $scale = $this->scale - $trimmableZeros; + + return new BigDecimal($value, $scale); + } + + /** + * Returns the absolute value of this number. + * + * @return BigDecimal + */ + public function abs() : BigDecimal + { + return $this->isNegative() ? $this->negated() : $this; + } + + /** + * Returns the negated value of this number. + * + * @return BigDecimal + */ + public function negated() : BigDecimal + { + return new BigDecimal(Calculator::get()->neg($this->value), $this->scale); + } + + /** + * {@inheritdoc} + */ + public function compareTo($that) : int + { + $that = BigNumber::of($that); + + if ($that instanceof BigInteger) { + $that = $that->toBigDecimal(); + } + + if ($that instanceof BigDecimal) { + [$a, $b] = $this->scaleValues($this, $that); + + return Calculator::get()->cmp($a, $b); + } + + return - $that->compareTo($this); + } + + /** + * {@inheritdoc} + */ + public function getSign() : int + { + return ($this->value === '0') ? 0 : (($this->value[0] === '-') ? -1 : 1); + } + + /** + * @return BigInteger + */ + public function getUnscaledValue() : BigInteger + { + return BigInteger::create($this->value); + } + + /** + * @return int + */ + public function getScale() : int + { + return $this->scale; + } + + /** + * Returns a string representing the integral part of this decimal number. + * + * Example: `-123.456` => `-123`. + * + * @return string + */ + public function getIntegralPart() : string + { + if ($this->scale === 0) { + return $this->value; + } + + $value = $this->getUnscaledValueWithLeadingZeros(); + + return \substr($value, 0, -$this->scale); + } + + /** + * Returns a string representing the fractional part of this decimal number. + * + * If the scale is zero, an empty string is returned. + * + * Examples: `-123.456` => '456', `123` => ''. + * + * @return string + */ + public function getFractionalPart() : string + { + if ($this->scale === 0) { + return ''; + } + + $value = $this->getUnscaledValueWithLeadingZeros(); + + return \substr($value, -$this->scale); + } + + /** + * Returns whether this decimal number has a non-zero fractional part. + * + * @return bool + */ + public function hasNonZeroFractionalPart() : bool + { + return $this->getFractionalPart() !== \str_repeat('0', $this->scale); + } + + /** + * {@inheritdoc} + */ + public function toBigInteger() : BigInteger + { + if ($this->scale === 0) { + $zeroScaleDecimal = $this; + } else { + $zeroScaleDecimal = $this->dividedBy(1, 0); + } + + return BigInteger::create($zeroScaleDecimal->value); + } + + /** + * {@inheritdoc} + */ + public function toBigDecimal() : BigDecimal + { + return $this; + } + + /** + * {@inheritdoc} + */ + public function toBigRational() : BigRational + { + $numerator = BigInteger::create($this->value); + $denominator = BigInteger::create('1' . \str_repeat('0', $this->scale)); + + return BigRational::create($numerator, $denominator, false); + } + + /** + * {@inheritdoc} + */ + public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal + { + if ($scale === $this->scale) { + return $this; + } + + return $this->dividedBy(BigDecimal::one(), $scale, $roundingMode); + } + + /** + * {@inheritdoc} + */ + public function toInt() : int + { + return $this->toBigInteger()->toInt(); + } + + /** + * {@inheritdoc} + */ + public function toFloat() : float + { + return (float) (string) $this; + } + + /** + * {@inheritdoc} + */ + public function __toString() : string + { + if ($this->scale === 0) { + return $this->value; + } + + $value = $this->getUnscaledValueWithLeadingZeros(); + + return \substr($value, 0, -$this->scale) . '.' . \substr($value, -$this->scale); + } + + /** + * This method is required by interface Serializable and SHOULD NOT be accessed directly. + * + * @internal + * + * @return string + */ + public function serialize() : string + { + return $this->value . ':' . $this->scale; + } + + /** + * This method is only here to implement interface Serializable and cannot be accessed directly. + * + * @internal + * + * @param string $value + * + * @return void + * + * @throws \LogicException + */ + public function unserialize($value) : void + { + if (isset($this->value)) { + throw new \LogicException('unserialize() is an internal function, it must not be called directly.'); + } + + [$value, $scale] = \explode(':', $value); + + $this->value = $value; + $this->scale = (int) $scale; + } + + /** + * Puts the internal values of the given decimal numbers on the same scale. + * + * @param BigDecimal $x The first decimal number. + * @param BigDecimal $y The second decimal number. + * + * @return array{0: string, 1: string} The scaled integer values of $x and $y. + */ + private function scaleValues(BigDecimal $x, BigDecimal $y) : array + { + $a = $x->value; + $b = $y->value; + + if ($b !== '0' && $x->scale > $y->scale) { + $b .= \str_repeat('0', $x->scale - $y->scale); + } elseif ($a !== '0' && $x->scale < $y->scale) { + $a .= \str_repeat('0', $y->scale - $x->scale); + } + + return [$a, $b]; + } + + /** + * @param int $scale + * + * @return string + */ + private function valueWithMinScale(int $scale) : string + { + $value = $this->value; + + if ($this->value !== '0' && $scale > $this->scale) { + $value .= \str_repeat('0', $scale - $this->scale); + } + + return $value; + } + + /** + * Adds leading zeros if necessary to the unscaled value to represent the full decimal number. + * + * @return string + */ + private function getUnscaledValueWithLeadingZeros() : string + { + $value = $this->value; + $targetLength = $this->scale + 1; + $negative = ($value[0] === '-'); + $length = \strlen($value); + + if ($negative) { + $length--; + } + + if ($length >= $targetLength) { + return $this->value; + } + + if ($negative) { + $value = \substr($value, 1); + } + + $value = \str_pad($value, $targetLength, '0', STR_PAD_LEFT); + + if ($negative) { + $value = '-' . $value; + } + + return $value; + } +} diff --git a/vendor/brick/math/src/BigInteger.php b/vendor/brick/math/src/BigInteger.php new file mode 100644 index 000000000..cee3ce82b --- /dev/null +++ b/vendor/brick/math/src/BigInteger.php @@ -0,0 +1,1134 @@ +value = $value; + } + + /** + * Creates a BigInteger of the given value. + * + * @param BigNumber|int|float|string $value + * + * @return BigInteger + * + * @throws MathException If the value cannot be converted to a BigInteger. + * + * @psalm-pure + */ + public static function of($value) : BigNumber + { + return parent::of($value)->toBigInteger(); + } + + /** + * Creates a number from a string in a given base. + * + * The string can optionally be prefixed with the `+` or `-` sign. + * + * Bases greater than 36 are not supported by this method, as there is no clear consensus on which of the lowercase + * or uppercase characters should come first. Instead, this method accepts any base up to 36, and does not + * differentiate lowercase and uppercase characters, which are considered equal. + * + * For bases greater than 36, and/or custom alphabets, use the fromArbitraryBase() method. + * + * @param string $number The number to convert, in the given base. + * @param int $base The base of the number, between 2 and 36. + * + * @return BigInteger + * + * @throws NumberFormatException If the number is empty, or contains invalid chars for the given base. + * @throws \InvalidArgumentException If the base is out of range. + * + * @psalm-pure + */ + public static function fromBase(string $number, int $base) : BigInteger + { + if ($number === '') { + throw new NumberFormatException('The number cannot be empty.'); + } + + if ($base < 2 || $base > 36) { + throw new \InvalidArgumentException(\sprintf('Base %d is not in range 2 to 36.', $base)); + } + + if ($number[0] === '-') { + $sign = '-'; + $number = \substr($number, 1); + } elseif ($number[0] === '+') { + $sign = ''; + $number = \substr($number, 1); + } else { + $sign = ''; + } + + if ($number === '') { + throw new NumberFormatException('The number cannot be empty.'); + } + + $number = \ltrim($number, '0'); + + if ($number === '') { + // The result will be the same in any base, avoid further calculation. + return BigInteger::zero(); + } + + if ($number === '1') { + // The result will be the same in any base, avoid further calculation. + return new BigInteger($sign . '1'); + } + + $pattern = '/[^' . \substr(Calculator::ALPHABET, 0, $base) . ']/'; + + if (\preg_match($pattern, \strtolower($number), $matches) === 1) { + throw new NumberFormatException(\sprintf('"%s" is not a valid character in base %d.', $matches[0], $base)); + } + + if ($base === 10) { + // The number is usable as is, avoid further calculation. + return new BigInteger($sign . $number); + } + + $result = Calculator::get()->fromBase($number, $base); + + return new BigInteger($sign . $result); + } + + /** + * Parses a string containing an integer in an arbitrary base, using a custom alphabet. + * + * Because this method accepts an alphabet with any character, including dash, it does not handle negative numbers. + * + * @param string $number The number to parse. + * @param string $alphabet The alphabet, for example '01' for base 2, or '01234567' for base 8. + * + * @return BigInteger + * + * @throws NumberFormatException If the given number is empty or contains invalid chars for the given alphabet. + * @throws \InvalidArgumentException If the alphabet does not contain at least 2 chars. + * + * @psalm-pure + */ + public static function fromArbitraryBase(string $number, string $alphabet) : BigInteger + { + if ($number === '') { + throw new NumberFormatException('The number cannot be empty.'); + } + + $base = \strlen($alphabet); + + if ($base < 2) { + throw new \InvalidArgumentException('The alphabet must contain at least 2 chars.'); + } + + $pattern = '/[^' . \preg_quote($alphabet, '/') . ']/'; + + if (\preg_match($pattern, $number, $matches) === 1) { + throw NumberFormatException::charNotInAlphabet($matches[0]); + } + + $number = Calculator::get()->fromArbitraryBase($number, $alphabet, $base); + + return new BigInteger($number); + } + + /** + * Translates a string of bytes containing the binary representation of a BigInteger into a BigInteger. + * + * The input string is assumed to be in big-endian byte-order: the most significant byte is in the zeroth element. + * + * If `$signed` is true, the input is assumed to be in two's-complement representation, and the leading bit is + * interpreted as a sign bit. If `$signed` is false, the input is interpreted as an unsigned number, and the + * resulting BigInteger will always be positive or zero. + * + * This method can be used to retrieve a number exported by `toBytes()`, as long as the `$signed` flags match. + * + * @param string $value The byte string. + * @param bool $signed Whether to interpret as a signed number in two's-complement representation with a leading + * sign bit. + * + * @return BigInteger + * + * @throws NumberFormatException If the string is empty. + */ + public static function fromBytes(string $value, bool $signed = true) : BigInteger + { + if ($value === '') { + throw new NumberFormatException('The byte string must not be empty.'); + } + + $twosComplement = false; + + if ($signed) { + $x = \ord($value[0]); + + if (($twosComplement = ($x >= 0x80))) { + $value = ~$value; + } + } + + $number = self::fromBase(\bin2hex($value), 16); + + if ($twosComplement) { + return $number->plus(1)->negated(); + } + + return $number; + } + + /** + * Generates a pseudo-random number in the range 0 to 2^numBits - 1. + * + * Using the default random bytes generator, this method is suitable for cryptographic use. + * + * @param int $numBits The number of bits. + * @param callable|null $randomBytesGenerator A function that accepts a number of bytes as an integer, and returns a + * string of random bytes of the given length. Defaults to the + * `random_bytes()` function. + * + * @return BigInteger + * + * @throws \InvalidArgumentException If $numBits is negative. + */ + public static function randomBits(int $numBits, ?callable $randomBytesGenerator = null) : BigInteger + { + if ($numBits < 0) { + throw new \InvalidArgumentException('The number of bits cannot be negative.'); + } + + if ($numBits === 0) { + return BigInteger::zero(); + } + + if ($randomBytesGenerator === null) { + $randomBytesGenerator = 'random_bytes'; + } + + $byteLength = \intdiv($numBits - 1, 8) + 1; + + $extraBits = ($byteLength * 8 - $numBits); + $bitmask = \chr(0xFF >> $extraBits); + + $randomBytes = $randomBytesGenerator($byteLength); + $randomBytes[0] = $randomBytes[0] & $bitmask; + + return self::fromBytes($randomBytes, false); + } + + /** + * Generates a pseudo-random number between `$min` and `$max`. + * + * Using the default random bytes generator, this method is suitable for cryptographic use. + * + * @param BigNumber|int|float|string $min The lower bound. Must be convertible to a BigInteger. + * @param BigNumber|int|float|string $max The upper bound. Must be convertible to a BigInteger. + * @param callable|null $randomBytesGenerator A function that accepts a number of bytes as an integer, + * and returns a string of random bytes of the given length. + * Defaults to the `random_bytes()` function. + * + * @return BigInteger + * + * @throws MathException If one of the parameters cannot be converted to a BigInteger, + * or `$min` is greater than `$max`. + */ + public static function randomRange($min, $max, ?callable $randomBytesGenerator = null) : BigInteger + { + $min = BigInteger::of($min); + $max = BigInteger::of($max); + + if ($min->isGreaterThan($max)) { + throw new MathException('$min cannot be greater than $max.'); + } + + if ($min->isEqualTo($max)) { + return $min; + } + + $diff = $max->minus($min); + $bitLength = $diff->getBitLength(); + + // try until the number is in range (50% to 100% chance of success) + do { + $randomNumber = self::randomBits($bitLength, $randomBytesGenerator); + } while ($randomNumber->isGreaterThan($diff)); + + return $randomNumber->plus($min); + } + + /** + * Returns a BigInteger representing zero. + * + * @return BigInteger + * + * @psalm-pure + */ + public static function zero() : BigInteger + { + /** @psalm-suppress ImpureStaticVariable */ + static $zero; + + if ($zero === null) { + $zero = new BigInteger('0'); + } + + return $zero; + } + + /** + * Returns a BigInteger representing one. + * + * @return BigInteger + * + * @psalm-pure + */ + public static function one() : BigInteger + { + /** @psalm-suppress ImpureStaticVariable */ + static $one; + + if ($one === null) { + $one = new BigInteger('1'); + } + + return $one; + } + + /** + * Returns a BigInteger representing ten. + * + * @return BigInteger + * + * @psalm-pure + */ + public static function ten() : BigInteger + { + /** @psalm-suppress ImpureStaticVariable */ + static $ten; + + if ($ten === null) { + $ten = new BigInteger('10'); + } + + return $ten; + } + + /** + * Returns the sum of this number and the given one. + * + * @param BigNumber|int|float|string $that The number to add. Must be convertible to a BigInteger. + * + * @return BigInteger The result. + * + * @throws MathException If the number is not valid, or is not convertible to a BigInteger. + */ + public function plus($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '0') { + return $this; + } + + if ($this->value === '0') { + return $that; + } + + $value = Calculator::get()->add($this->value, $that->value); + + return new BigInteger($value); + } + + /** + * Returns the difference of this number and the given one. + * + * @param BigNumber|int|float|string $that The number to subtract. Must be convertible to a BigInteger. + * + * @return BigInteger The result. + * + * @throws MathException If the number is not valid, or is not convertible to a BigInteger. + */ + public function minus($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '0') { + return $this; + } + + $value = Calculator::get()->sub($this->value, $that->value); + + return new BigInteger($value); + } + + /** + * Returns the product of this number and the given one. + * + * @param BigNumber|int|float|string $that The multiplier. Must be convertible to a BigInteger. + * + * @return BigInteger The result. + * + * @throws MathException If the multiplier is not a valid number, or is not convertible to a BigInteger. + */ + public function multipliedBy($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '1') { + return $this; + } + + if ($this->value === '1') { + return $that; + } + + $value = Calculator::get()->mul($this->value, $that->value); + + return new BigInteger($value); + } + + /** + * Returns the result of the division of this number by the given one. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigInteger. + * @param int $roundingMode An optional rounding mode. + * + * @return BigInteger The result. + * + * @throws MathException If the divisor is not a valid number, is not convertible to a BigInteger, is zero, + * or RoundingMode::UNNECESSARY is used and the remainder is not zero. + */ + public function dividedBy($that, int $roundingMode = RoundingMode::UNNECESSARY) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '1') { + return $this; + } + + if ($that->value === '0') { + throw DivisionByZeroException::divisionByZero(); + } + + $result = Calculator::get()->divRound($this->value, $that->value, $roundingMode); + + return new BigInteger($result); + } + + /** + * Returns this number exponentiated to the given value. + * + * @param int $exponent The exponent. + * + * @return BigInteger The result. + * + * @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000. + */ + public function power(int $exponent) : BigInteger + { + if ($exponent === 0) { + return BigInteger::one(); + } + + if ($exponent === 1) { + return $this; + } + + if ($exponent < 0 || $exponent > Calculator::MAX_POWER) { + throw new \InvalidArgumentException(\sprintf( + 'The exponent %d is not in the range 0 to %d.', + $exponent, + Calculator::MAX_POWER + )); + } + + return new BigInteger(Calculator::get()->pow($this->value, $exponent)); + } + + /** + * Returns the quotient of the division of this number by the given one. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigInteger. + * + * @return BigInteger + * + * @throws DivisionByZeroException If the divisor is zero. + */ + public function quotient($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '1') { + return $this; + } + + if ($that->value === '0') { + throw DivisionByZeroException::divisionByZero(); + } + + $quotient = Calculator::get()->divQ($this->value, $that->value); + + return new BigInteger($quotient); + } + + /** + * Returns the remainder of the division of this number by the given one. + * + * The remainder, when non-zero, has the same sign as the dividend. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigInteger. + * + * @return BigInteger + * + * @throws DivisionByZeroException If the divisor is zero. + */ + public function remainder($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '1') { + return BigInteger::zero(); + } + + if ($that->value === '0') { + throw DivisionByZeroException::divisionByZero(); + } + + $remainder = Calculator::get()->divR($this->value, $that->value); + + return new BigInteger($remainder); + } + + /** + * Returns the quotient and remainder of the division of this number by the given one. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigInteger. + * + * @return BigInteger[] An array containing the quotient and the remainder. + * + * @throws DivisionByZeroException If the divisor is zero. + */ + public function quotientAndRemainder($that) : array + { + $that = BigInteger::of($that); + + if ($that->value === '0') { + throw DivisionByZeroException::divisionByZero(); + } + + [$quotient, $remainder] = Calculator::get()->divQR($this->value, $that->value); + + return [ + new BigInteger($quotient), + new BigInteger($remainder) + ]; + } + + /** + * Returns the modulo of this number and the given one. + * + * The modulo operation yields the same result as the remainder operation when both operands are of the same sign, + * and may differ when signs are different. + * + * The result of the modulo operation, when non-zero, has the same sign as the divisor. + * + * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigInteger. + * + * @return BigInteger + * + * @throws DivisionByZeroException If the divisor is zero. + */ + public function mod($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '0') { + throw DivisionByZeroException::modulusMustNotBeZero(); + } + + $value = Calculator::get()->mod($this->value, $that->value); + + return new BigInteger($value); + } + + /** + * Returns the modular multiplicative inverse of this BigInteger modulo $m. + * + * @param BigInteger $m + * + * @return BigInteger + * + * @throws DivisionByZeroException If $m is zero. + * @throws NegativeNumberException If $m is negative. + * @throws MathException If this BigInteger has no multiplicative inverse mod m (that is, this BigInteger + * is not relatively prime to m). + */ + public function modInverse(BigInteger $m) : BigInteger + { + if ($m->value === '0') { + throw DivisionByZeroException::modulusMustNotBeZero(); + } + + if ($m->isNegative()) { + throw new NegativeNumberException('Modulus must not be negative.'); + } + + if ($m->value === '1') { + return BigInteger::zero(); + } + + $value = Calculator::get()->modInverse($this->value, $m->value); + + if ($value === null) { + throw new MathException('Unable to compute the modInverse for the given modulus.'); + } + + return new BigInteger($value); + } + + /** + * Returns this number raised into power with modulo. + * + * This operation only works on positive numbers. + * + * @param BigNumber|int|float|string $exp The exponent. Must be positive or zero. + * @param BigNumber|int|float|string $mod The modulus. Must be strictly positive. + * + * @return BigInteger + * + * @throws NegativeNumberException If any of the operands is negative. + * @throws DivisionByZeroException If the modulus is zero. + */ + public function modPow($exp, $mod) : BigInteger + { + $exp = BigInteger::of($exp); + $mod = BigInteger::of($mod); + + if ($this->isNegative() || $exp->isNegative() || $mod->isNegative()) { + throw new NegativeNumberException('The operands cannot be negative.'); + } + + if ($mod->isZero()) { + throw DivisionByZeroException::modulusMustNotBeZero(); + } + + $result = Calculator::get()->modPow($this->value, $exp->value, $mod->value); + + return new BigInteger($result); + } + + /** + * Returns the greatest common divisor of this number and the given one. + * + * The GCD is always positive, unless both operands are zero, in which case it is zero. + * + * @param BigNumber|int|float|string $that The operand. Must be convertible to an integer number. + * + * @return BigInteger + */ + public function gcd($that) : BigInteger + { + $that = BigInteger::of($that); + + if ($that->value === '0' && $this->value[0] !== '-') { + return $this; + } + + if ($this->value === '0' && $that->value[0] !== '-') { + return $that; + } + + $value = Calculator::get()->gcd($this->value, $that->value); + + return new BigInteger($value); + } + + /** + * Returns the integer square root number of this number, rounded down. + * + * The result is the largest x such that x² ≤ n. + * + * @return BigInteger + * + * @throws NegativeNumberException If this number is negative. + */ + public function sqrt() : BigInteger + { + if ($this->value[0] === '-') { + throw new NegativeNumberException('Cannot calculate the square root of a negative number.'); + } + + $value = Calculator::get()->sqrt($this->value); + + return new BigInteger($value); + } + + /** + * Returns the absolute value of this number. + * + * @return BigInteger + */ + public function abs() : BigInteger + { + return $this->isNegative() ? $this->negated() : $this; + } + + /** + * Returns the inverse of this number. + * + * @return BigInteger + */ + public function negated() : BigInteger + { + return new BigInteger(Calculator::get()->neg($this->value)); + } + + /** + * Returns the integer bitwise-and combined with another integer. + * + * This method returns a negative BigInteger if and only if both operands are negative. + * + * @param BigNumber|int|float|string $that The operand. Must be convertible to an integer number. + * + * @return BigInteger + */ + public function and($that) : BigInteger + { + $that = BigInteger::of($that); + + return new BigInteger(Calculator::get()->and($this->value, $that->value)); + } + + /** + * Returns the integer bitwise-or combined with another integer. + * + * This method returns a negative BigInteger if and only if either of the operands is negative. + * + * @param BigNumber|int|float|string $that The operand. Must be convertible to an integer number. + * + * @return BigInteger + */ + public function or($that) : BigInteger + { + $that = BigInteger::of($that); + + return new BigInteger(Calculator::get()->or($this->value, $that->value)); + } + + /** + * Returns the integer bitwise-xor combined with another integer. + * + * This method returns a negative BigInteger if and only if exactly one of the operands is negative. + * + * @param BigNumber|int|float|string $that The operand. Must be convertible to an integer number. + * + * @return BigInteger + */ + public function xor($that) : BigInteger + { + $that = BigInteger::of($that); + + return new BigInteger(Calculator::get()->xor($this->value, $that->value)); + } + + /** + * Returns the bitwise-not of this BigInteger. + * + * @return BigInteger + */ + public function not() : BigInteger + { + return $this->negated()->minus(1); + } + + /** + * Returns the integer left shifted by a given number of bits. + * + * @param int $distance The distance to shift. + * + * @return BigInteger + */ + public function shiftedLeft(int $distance) : BigInteger + { + if ($distance === 0) { + return $this; + } + + if ($distance < 0) { + return $this->shiftedRight(- $distance); + } + + return $this->multipliedBy(BigInteger::of(2)->power($distance)); + } + + /** + * Returns the integer right shifted by a given number of bits. + * + * @param int $distance The distance to shift. + * + * @return BigInteger + */ + public function shiftedRight(int $distance) : BigInteger + { + if ($distance === 0) { + return $this; + } + + if ($distance < 0) { + return $this->shiftedLeft(- $distance); + } + + $operand = BigInteger::of(2)->power($distance); + + if ($this->isPositiveOrZero()) { + return $this->quotient($operand); + } + + return $this->dividedBy($operand, RoundingMode::UP); + } + + /** + * Returns the number of bits in the minimal two's-complement representation of this BigInteger, excluding a sign bit. + * + * For positive BigIntegers, this is equivalent to the number of bits in the ordinary binary representation. + * Computes (ceil(log2(this < 0 ? -this : this+1))). + * + * @return int + */ + public function getBitLength() : int + { + if ($this->value === '0') { + return 0; + } + + if ($this->isNegative()) { + return $this->abs()->minus(1)->getBitLength(); + } + + return \strlen($this->toBase(2)); + } + + /** + * Returns the index of the rightmost (lowest-order) one bit in this BigInteger. + * + * Returns -1 if this BigInteger contains no one bits. + * + * @return int + */ + public function getLowestSetBit() : int + { + $n = $this; + $bitLength = $this->getBitLength(); + + for ($i = 0; $i <= $bitLength; $i++) { + if ($n->isOdd()) { + return $i; + } + + $n = $n->shiftedRight(1); + } + + return -1; + } + + /** + * Returns whether this number is even. + * + * @return bool + */ + public function isEven() : bool + { + return \in_array($this->value[-1], ['0', '2', '4', '6', '8'], true); + } + + /** + * Returns whether this number is odd. + * + * @return bool + */ + public function isOdd() : bool + { + return \in_array($this->value[-1], ['1', '3', '5', '7', '9'], true); + } + + /** + * Returns true if and only if the designated bit is set. + * + * Computes ((this & (1<shiftedRight($n)->isOdd(); + } + + /** + * {@inheritdoc} + */ + public function compareTo($that) : int + { + $that = BigNumber::of($that); + + if ($that instanceof BigInteger) { + return Calculator::get()->cmp($this->value, $that->value); + } + + return - $that->compareTo($this); + } + + /** + * {@inheritdoc} + */ + public function getSign() : int + { + return ($this->value === '0') ? 0 : (($this->value[0] === '-') ? -1 : 1); + } + + /** + * {@inheritdoc} + */ + public function toBigInteger() : BigInteger + { + return $this; + } + + /** + * {@inheritdoc} + */ + public function toBigDecimal() : BigDecimal + { + return BigDecimal::create($this->value); + } + + /** + * {@inheritdoc} + */ + public function toBigRational() : BigRational + { + return BigRational::create($this, BigInteger::one(), false); + } + + /** + * {@inheritdoc} + */ + public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal + { + return $this->toBigDecimal()->toScale($scale, $roundingMode); + } + + /** + * {@inheritdoc} + */ + public function toInt() : int + { + $intValue = (int) $this->value; + + if ($this->value !== (string) $intValue) { + throw IntegerOverflowException::toIntOverflow($this); + } + + return $intValue; + } + + /** + * {@inheritdoc} + */ + public function toFloat() : float + { + return (float) $this->value; + } + + /** + * Returns a string representation of this number in the given base. + * + * The output will always be lowercase for bases greater than 10. + * + * @param int $base + * + * @return string + * + * @throws \InvalidArgumentException If the base is out of range. + */ + public function toBase(int $base) : string + { + if ($base === 10) { + return $this->value; + } + + if ($base < 2 || $base > 36) { + throw new \InvalidArgumentException(\sprintf('Base %d is out of range [2, 36]', $base)); + } + + return Calculator::get()->toBase($this->value, $base); + } + + /** + * Returns a string representation of this number in an arbitrary base with a custom alphabet. + * + * Because this method accepts an alphabet with any character, including dash, it does not handle negative numbers; + * a NegativeNumberException will be thrown when attempting to call this method on a negative number. + * + * @param string $alphabet The alphabet, for example '01' for base 2, or '01234567' for base 8. + * + * @return string + * + * @throws NegativeNumberException If this number is negative. + * @throws \InvalidArgumentException If the given alphabet does not contain at least 2 chars. + */ + public function toArbitraryBase(string $alphabet) : string + { + $base = \strlen($alphabet); + + if ($base < 2) { + throw new \InvalidArgumentException('The alphabet must contain at least 2 chars.'); + } + + if ($this->value[0] === '-') { + throw new NegativeNumberException(__FUNCTION__ . '() does not support negative numbers.'); + } + + return Calculator::get()->toArbitraryBase($this->value, $alphabet, $base); + } + + /** + * Returns a string of bytes containing the binary representation of this BigInteger. + * + * The string is in big-endian byte-order: the most significant byte is in the zeroth element. + * + * If `$signed` is true, the output will be in two's-complement representation, and a sign bit will be prepended to + * the output. If `$signed` is false, no sign bit will be prepended, and this method will throw an exception if the + * number is negative. + * + * The string will contain the minimum number of bytes required to represent this BigInteger, including a sign bit + * if `$signed` is true. + * + * This representation is compatible with the `fromBytes()` factory method, as long as the `$signed` flags match. + * + * @param bool $signed Whether to output a signed number in two's-complement representation with a leading sign bit. + * + * @return string + * + * @throws NegativeNumberException If $signed is false, and the number is negative. + */ + public function toBytes(bool $signed = true) : string + { + if (! $signed && $this->isNegative()) { + throw new NegativeNumberException('Cannot convert a negative number to a byte string when $signed is false.'); + } + + $hex = $this->abs()->toBase(16); + + if (\strlen($hex) % 2 !== 0) { + $hex = '0' . $hex; + } + + $baseHexLength = \strlen($hex); + + if ($signed) { + if ($this->isNegative()) { + $hex = \bin2hex(~\hex2bin($hex)); + $hex = self::fromBase($hex, 16)->plus(1)->toBase(16); + + $hexLength = \strlen($hex); + + if ($hexLength < $baseHexLength) { + $hex = \str_repeat('0', $baseHexLength - $hexLength) . $hex; + } + + if ($hex[0] < '8') { + $hex = 'FF' . $hex; + } + } else { + if ($hex[0] >= '8') { + $hex = '00' . $hex; + } + } + } + + return \hex2bin($hex); + } + + /** + * {@inheritdoc} + */ + public function __toString() : string + { + return $this->value; + } + + /** + * This method is required by interface Serializable and SHOULD NOT be accessed directly. + * + * @internal + * + * @return string + */ + public function serialize() : string + { + return $this->value; + } + + /** + * This method is only here to implement interface Serializable and cannot be accessed directly. + * + * @internal + * + * @param string $value + * + * @return void + * + * @throws \LogicException + */ + public function unserialize($value) : void + { + if (isset($this->value)) { + throw new \LogicException('unserialize() is an internal function, it must not be called directly.'); + } + + $this->value = $value; + } +} diff --git a/vendor/brick/math/src/BigNumber.php b/vendor/brick/math/src/BigNumber.php new file mode 100644 index 000000000..59fcc7ce5 --- /dev/null +++ b/vendor/brick/math/src/BigNumber.php @@ -0,0 +1,566 @@ +[\-\+])?' . + '(?:' . + '(?:' . + '(?[0-9]+)?' . + '(?\.)?' . + '(?[0-9]+)?' . + '(?:[eE](?[\-\+]?[0-9]+))?' . + ')|(?:' . + '(?[0-9]+)' . + '\/?' . + '(?[0-9]+)' . + ')' . + ')' . + '$/'; + + /** + * Creates a BigNumber of the given value. + * + * The concrete return type is dependent on the given value, with the following rules: + * + * - BigNumber instances are returned as is + * - integer numbers are returned as BigInteger + * - floating point numbers are converted to a string then parsed as such + * - strings containing a `/` character are returned as BigRational + * - strings containing a `.` character or using an exponential notation are returned as BigDecimal + * - strings containing only digits with an optional leading `+` or `-` sign are returned as BigInteger + * + * @param BigNumber|int|float|string $value + * + * @return BigNumber + * + * @throws NumberFormatException If the format of the number is not valid. + * @throws DivisionByZeroException If the value represents a rational number with a denominator of zero. + * + * @psalm-pure + */ + public static function of($value) : BigNumber + { + if ($value instanceof BigNumber) { + return $value; + } + + if (\is_int($value)) { + return new BigInteger((string) $value); + } + + if (\is_float($value)) { + $value = self::floatToString($value); + } else { + $value = (string) $value; + } + + $throw = function() use ($value) : void { + throw new NumberFormatException(\sprintf( + 'The given value "%s" does not represent a valid number.', + $value + )); + }; + + if (\preg_match(self::PARSE_REGEXP, $value, $matches) !== 1) { + $throw(); + } + + $getMatch = function(string $value) use ($matches) : ?string { + return isset($matches[$value]) && $matches[$value] !== '' ? $matches[$value] : null; + }; + + $sign = $getMatch('sign'); + $numerator = $getMatch('numerator'); + $denominator = $getMatch('denominator'); + + if ($numerator !== null) { + $numerator = self::cleanUp($sign . $numerator); + $denominator = self::cleanUp($denominator); + + if ($denominator === '0') { + throw DivisionByZeroException::denominatorMustNotBeZero(); + } + + return new BigRational( + new BigInteger($numerator), + new BigInteger($denominator), + false + ); + } + + $point = $getMatch('point'); + $integral = $getMatch('integral'); + $fractional = $getMatch('fractional'); + $exponent = $getMatch('exponent'); + + if ($integral === null && $fractional === null) { + $throw(); + } + + if ($integral === null) { + $integral = '0'; + } + + if ($point !== null || $exponent !== null) { + $fractional = $fractional ?? ''; + $exponent = $exponent !== null ? (int) $exponent : 0; + + if ($exponent === PHP_INT_MIN || $exponent === PHP_INT_MAX) { + throw new NumberFormatException('Exponent too large.'); + } + + $unscaledValue = self::cleanUp($sign . $integral . $fractional); + + $scale = \strlen($fractional) - $exponent; + + if ($scale < 0) { + if ($unscaledValue !== '0') { + $unscaledValue .= \str_repeat('0', - $scale); + } + $scale = 0; + } + + return new BigDecimal($unscaledValue, $scale); + } + + $integral = self::cleanUp($sign . $integral); + + return new BigInteger($integral); + } + + /** + * Safely converts float to string, avoiding locale-dependent issues. + * + * @see https://github.com/brick/math/pull/20 + * + * @param float $float + * + * @return string + * + * @psalm-pure + * @psalm-suppress ImpureFunctionCall + */ + private static function floatToString(float $float) : string + { + $currentLocale = \setlocale(LC_NUMERIC, '0'); + \setlocale(LC_NUMERIC, 'C'); + + $result = (string) $float; + + \setlocale(LC_NUMERIC, $currentLocale); + + return $result; + } + + /** + * Proxy method to access protected constructors from sibling classes. + * + * @internal + * + * @param mixed ...$args The arguments to the constructor. + * + * @return static + * + * @psalm-pure + */ + protected static function create(... $args) : BigNumber + { + /** @psalm-suppress TooManyArguments */ + return new static(... $args); + } + + /** + * Returns the minimum of the given values. + * + * @param BigNumber|int|float|string ...$values The numbers to compare. All the numbers need to be convertible + * to an instance of the class this method is called on. + * + * @return static The minimum value. + * + * @throws \InvalidArgumentException If no values are given. + * @throws MathException If an argument is not valid. + * + * @psalm-pure + */ + public static function min(...$values) : BigNumber + { + $min = null; + + foreach ($values as $value) { + $value = static::of($value); + + if ($min === null || $value->isLessThan($min)) { + $min = $value; + } + } + + if ($min === null) { + throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.'); + } + + return $min; + } + + /** + * Returns the maximum of the given values. + * + * @param BigNumber|int|float|string ...$values The numbers to compare. All the numbers need to be convertible + * to an instance of the class this method is called on. + * + * @return static The maximum value. + * + * @throws \InvalidArgumentException If no values are given. + * @throws MathException If an argument is not valid. + * + * @psalm-pure + */ + public static function max(...$values) : BigNumber + { + $max = null; + + foreach ($values as $value) { + $value = static::of($value); + + if ($max === null || $value->isGreaterThan($max)) { + $max = $value; + } + } + + if ($max === null) { + throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.'); + } + + return $max; + } + + /** + * Returns the sum of the given values. + * + * @param BigNumber|int|float|string ...$values The numbers to add. All the numbers need to be convertible + * to an instance of the class this method is called on. + * + * @return static The sum. + * + * @throws \InvalidArgumentException If no values are given. + * @throws MathException If an argument is not valid. + * + * @psalm-pure + */ + public static function sum(...$values) : BigNumber + { + /** @var BigNumber|null $sum */ + $sum = null; + + foreach ($values as $value) { + $value = static::of($value); + + if ($sum === null) { + $sum = $value; + } else { + $sum = self::add($sum, $value); + } + } + + if ($sum === null) { + throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.'); + } + + return $sum; + } + + /** + * Adds two BigNumber instances in the correct order to avoid a RoundingNecessaryException. + * + * @todo This could be better resolved by creating an abstract protected method in BigNumber, and leaving to + * concrete classes the responsibility to perform the addition themselves or delegate it to the given number, + * depending on their ability to perform the operation. This will also require a version bump because we're + * potentially breaking custom BigNumber implementations (if any...) + * + * @param BigNumber $a + * @param BigNumber $b + * + * @return BigNumber + * + * @psalm-pure + */ + private static function add(BigNumber $a, BigNumber $b) : BigNumber + { + if ($a instanceof BigRational) { + return $a->plus($b); + } + + if ($b instanceof BigRational) { + return $b->plus($a); + } + + if ($a instanceof BigDecimal) { + return $a->plus($b); + } + + if ($b instanceof BigDecimal) { + return $b->plus($a); + } + + /** @var BigInteger $a */ + + return $a->plus($b); + } + + /** + * Removes optional leading zeros and + sign from the given number. + * + * @param string $number The number, validated as a non-empty string of digits with optional leading sign. + * + * @return string + * + * @psalm-pure + */ + private static function cleanUp(string $number) : string + { + $firstChar = $number[0]; + + if ($firstChar === '+' || $firstChar === '-') { + $number = \substr($number, 1); + } + + $number = \ltrim($number, '0'); + + if ($number === '') { + return '0'; + } + + if ($firstChar === '-') { + return '-' . $number; + } + + return $number; + } + + /** + * Checks if this number is equal to the given one. + * + * @param BigNumber|int|float|string $that + * + * @return bool + */ + public function isEqualTo($that) : bool + { + return $this->compareTo($that) === 0; + } + + /** + * Checks if this number is strictly lower than the given one. + * + * @param BigNumber|int|float|string $that + * + * @return bool + */ + public function isLessThan($that) : bool + { + return $this->compareTo($that) < 0; + } + + /** + * Checks if this number is lower than or equal to the given one. + * + * @param BigNumber|int|float|string $that + * + * @return bool + */ + public function isLessThanOrEqualTo($that) : bool + { + return $this->compareTo($that) <= 0; + } + + /** + * Checks if this number is strictly greater than the given one. + * + * @param BigNumber|int|float|string $that + * + * @return bool + */ + public function isGreaterThan($that) : bool + { + return $this->compareTo($that) > 0; + } + + /** + * Checks if this number is greater than or equal to the given one. + * + * @param BigNumber|int|float|string $that + * + * @return bool + */ + public function isGreaterThanOrEqualTo($that) : bool + { + return $this->compareTo($that) >= 0; + } + + /** + * Checks if this number equals zero. + * + * @return bool + */ + public function isZero() : bool + { + return $this->getSign() === 0; + } + + /** + * Checks if this number is strictly negative. + * + * @return bool + */ + public function isNegative() : bool + { + return $this->getSign() < 0; + } + + /** + * Checks if this number is negative or zero. + * + * @return bool + */ + public function isNegativeOrZero() : bool + { + return $this->getSign() <= 0; + } + + /** + * Checks if this number is strictly positive. + * + * @return bool + */ + public function isPositive() : bool + { + return $this->getSign() > 0; + } + + /** + * Checks if this number is positive or zero. + * + * @return bool + */ + public function isPositiveOrZero() : bool + { + return $this->getSign() >= 0; + } + + /** + * Returns the sign of this number. + * + * @return int -1 if the number is negative, 0 if zero, 1 if positive. + */ + abstract public function getSign() : int; + + /** + * Compares this number to the given one. + * + * @param BigNumber|int|float|string $that + * + * @return int [-1,0,1] If `$this` is lower than, equal to, or greater than `$that`. + * + * @throws MathException If the number is not valid. + */ + abstract public function compareTo($that) : int; + + /** + * Converts this number to a BigInteger. + * + * @return BigInteger The converted number. + * + * @throws RoundingNecessaryException If this number cannot be converted to a BigInteger without rounding. + */ + abstract public function toBigInteger() : BigInteger; + + /** + * Converts this number to a BigDecimal. + * + * @return BigDecimal The converted number. + * + * @throws RoundingNecessaryException If this number cannot be converted to a BigDecimal without rounding. + */ + abstract public function toBigDecimal() : BigDecimal; + + /** + * Converts this number to a BigRational. + * + * @return BigRational The converted number. + */ + abstract public function toBigRational() : BigRational; + + /** + * Converts this number to a BigDecimal with the given scale, using rounding if necessary. + * + * @param int $scale The scale of the resulting `BigDecimal`. + * @param int $roundingMode A `RoundingMode` constant. + * + * @return BigDecimal + * + * @throws RoundingNecessaryException If this number cannot be converted to the given scale without rounding. + * This only applies when RoundingMode::UNNECESSARY is used. + */ + abstract public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal; + + /** + * Returns the exact value of this number as a native integer. + * + * If this number cannot be converted to a native integer without losing precision, an exception is thrown. + * Note that the acceptable range for an integer depends on the platform and differs for 32-bit and 64-bit. + * + * @return int The converted value. + * + * @throws MathException If this number cannot be exactly converted to a native integer. + */ + abstract public function toInt() : int; + + /** + * Returns an approximation of this number as a floating-point value. + * + * Note that this method can discard information as the precision of a floating-point value + * is inherently limited. + * + * If the number is greater than the largest representable floating point number, positive infinity is returned. + * If the number is less than the smallest representable floating point number, negative infinity is returned. + * + * @return float The converted value. + */ + abstract public function toFloat() : float; + + /** + * Returns a string representation of this number. + * + * The output of this method can be parsed by the `of()` factory method; + * this will yield an object equal to this one, without any information loss. + * + * @return string + */ + abstract public function __toString() : string; + + /** + * {@inheritdoc} + */ + public function jsonSerialize() : string + { + return $this->__toString(); + } +} diff --git a/vendor/brick/math/src/BigRational.php b/vendor/brick/math/src/BigRational.php new file mode 100644 index 000000000..ff035c5c0 --- /dev/null +++ b/vendor/brick/math/src/BigRational.php @@ -0,0 +1,479 @@ +isZero()) { + throw DivisionByZeroException::denominatorMustNotBeZero(); + } + + if ($denominator->isNegative()) { + $numerator = $numerator->negated(); + $denominator = $denominator->negated(); + } + } + + $this->numerator = $numerator; + $this->denominator = $denominator; + } + + /** + * Creates a BigRational of the given value. + * + * @param BigNumber|int|float|string $value + * + * @return BigRational + * + * @throws MathException If the value cannot be converted to a BigRational. + * + * @psalm-pure + */ + public static function of($value) : BigNumber + { + return parent::of($value)->toBigRational(); + } + + /** + * Creates a BigRational out of a numerator and a denominator. + * + * If the denominator is negative, the signs of both the numerator and the denominator + * will be inverted to ensure that the denominator is always positive. + * + * @param BigNumber|int|float|string $numerator The numerator. Must be convertible to a BigInteger. + * @param BigNumber|int|float|string $denominator The denominator. Must be convertible to a BigInteger. + * + * @return BigRational + * + * @throws NumberFormatException If an argument does not represent a valid number. + * @throws RoundingNecessaryException If an argument represents a non-integer number. + * @throws DivisionByZeroException If the denominator is zero. + * + * @psalm-pure + */ + public static function nd($numerator, $denominator) : BigRational + { + $numerator = BigInteger::of($numerator); + $denominator = BigInteger::of($denominator); + + return new BigRational($numerator, $denominator, true); + } + + /** + * Returns a BigRational representing zero. + * + * @return BigRational + * + * @psalm-pure + */ + public static function zero() : BigRational + { + /** @psalm-suppress ImpureStaticVariable */ + static $zero; + + if ($zero === null) { + $zero = new BigRational(BigInteger::zero(), BigInteger::one(), false); + } + + return $zero; + } + + /** + * Returns a BigRational representing one. + * + * @return BigRational + * + * @psalm-pure + */ + public static function one() : BigRational + { + /** @psalm-suppress ImpureStaticVariable */ + static $one; + + if ($one === null) { + $one = new BigRational(BigInteger::one(), BigInteger::one(), false); + } + + return $one; + } + + /** + * Returns a BigRational representing ten. + * + * @return BigRational + * + * @psalm-pure + */ + public static function ten() : BigRational + { + /** @psalm-suppress ImpureStaticVariable */ + static $ten; + + if ($ten === null) { + $ten = new BigRational(BigInteger::ten(), BigInteger::one(), false); + } + + return $ten; + } + + /** + * @return BigInteger + */ + public function getNumerator() : BigInteger + { + return $this->numerator; + } + + /** + * @return BigInteger + */ + public function getDenominator() : BigInteger + { + return $this->denominator; + } + + /** + * Returns the quotient of the division of the numerator by the denominator. + * + * @return BigInteger + */ + public function quotient() : BigInteger + { + return $this->numerator->quotient($this->denominator); + } + + /** + * Returns the remainder of the division of the numerator by the denominator. + * + * @return BigInteger + */ + public function remainder() : BigInteger + { + return $this->numerator->remainder($this->denominator); + } + + /** + * Returns the quotient and remainder of the division of the numerator by the denominator. + * + * @return BigInteger[] + */ + public function quotientAndRemainder() : array + { + return $this->numerator->quotientAndRemainder($this->denominator); + } + + /** + * Returns the sum of this number and the given one. + * + * @param BigNumber|int|float|string $that The number to add. + * + * @return BigRational The result. + * + * @throws MathException If the number is not valid. + */ + public function plus($that) : BigRational + { + $that = BigRational::of($that); + + $numerator = $this->numerator->multipliedBy($that->denominator); + $numerator = $numerator->plus($that->numerator->multipliedBy($this->denominator)); + $denominator = $this->denominator->multipliedBy($that->denominator); + + return new BigRational($numerator, $denominator, false); + } + + /** + * Returns the difference of this number and the given one. + * + * @param BigNumber|int|float|string $that The number to subtract. + * + * @return BigRational The result. + * + * @throws MathException If the number is not valid. + */ + public function minus($that) : BigRational + { + $that = BigRational::of($that); + + $numerator = $this->numerator->multipliedBy($that->denominator); + $numerator = $numerator->minus($that->numerator->multipliedBy($this->denominator)); + $denominator = $this->denominator->multipliedBy($that->denominator); + + return new BigRational($numerator, $denominator, false); + } + + /** + * Returns the product of this number and the given one. + * + * @param BigNumber|int|float|string $that The multiplier. + * + * @return BigRational The result. + * + * @throws MathException If the multiplier is not a valid number. + */ + public function multipliedBy($that) : BigRational + { + $that = BigRational::of($that); + + $numerator = $this->numerator->multipliedBy($that->numerator); + $denominator = $this->denominator->multipliedBy($that->denominator); + + return new BigRational($numerator, $denominator, false); + } + + /** + * Returns the result of the division of this number by the given one. + * + * @param BigNumber|int|float|string $that The divisor. + * + * @return BigRational The result. + * + * @throws MathException If the divisor is not a valid number, or is zero. + */ + public function dividedBy($that) : BigRational + { + $that = BigRational::of($that); + + $numerator = $this->numerator->multipliedBy($that->denominator); + $denominator = $this->denominator->multipliedBy($that->numerator); + + return new BigRational($numerator, $denominator, true); + } + + /** + * Returns this number exponentiated to the given value. + * + * @param int $exponent The exponent. + * + * @return BigRational The result. + * + * @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000. + */ + public function power(int $exponent) : BigRational + { + if ($exponent === 0) { + $one = BigInteger::one(); + + return new BigRational($one, $one, false); + } + + if ($exponent === 1) { + return $this; + } + + return new BigRational( + $this->numerator->power($exponent), + $this->denominator->power($exponent), + false + ); + } + + /** + * Returns the reciprocal of this BigRational. + * + * The reciprocal has the numerator and denominator swapped. + * + * @return BigRational + * + * @throws DivisionByZeroException If the numerator is zero. + */ + public function reciprocal() : BigRational + { + return new BigRational($this->denominator, $this->numerator, true); + } + + /** + * Returns the absolute value of this BigRational. + * + * @return BigRational + */ + public function abs() : BigRational + { + return new BigRational($this->numerator->abs(), $this->denominator, false); + } + + /** + * Returns the negated value of this BigRational. + * + * @return BigRational + */ + public function negated() : BigRational + { + return new BigRational($this->numerator->negated(), $this->denominator, false); + } + + /** + * Returns the simplified value of this BigRational. + * + * @return BigRational + */ + public function simplified() : BigRational + { + $gcd = $this->numerator->gcd($this->denominator); + + $numerator = $this->numerator->quotient($gcd); + $denominator = $this->denominator->quotient($gcd); + + return new BigRational($numerator, $denominator, false); + } + + /** + * {@inheritdoc} + */ + public function compareTo($that) : int + { + return $this->minus($that)->getSign(); + } + + /** + * {@inheritdoc} + */ + public function getSign() : int + { + return $this->numerator->getSign(); + } + + /** + * {@inheritdoc} + */ + public function toBigInteger() : BigInteger + { + $simplified = $this->simplified(); + + if (! $simplified->denominator->isEqualTo(1)) { + throw new RoundingNecessaryException('This rational number cannot be represented as an integer value without rounding.'); + } + + return $simplified->numerator; + } + + /** + * {@inheritdoc} + */ + public function toBigDecimal() : BigDecimal + { + return $this->numerator->toBigDecimal()->exactlyDividedBy($this->denominator); + } + + /** + * {@inheritdoc} + */ + public function toBigRational() : BigRational + { + return $this; + } + + /** + * {@inheritdoc} + */ + public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal + { + return $this->numerator->toBigDecimal()->dividedBy($this->denominator, $scale, $roundingMode); + } + + /** + * {@inheritdoc} + */ + public function toInt() : int + { + return $this->toBigInteger()->toInt(); + } + + /** + * {@inheritdoc} + */ + public function toFloat() : float + { + return $this->numerator->toFloat() / $this->denominator->toFloat(); + } + + /** + * {@inheritdoc} + */ + public function __toString() : string + { + $numerator = (string) $this->numerator; + $denominator = (string) $this->denominator; + + if ($denominator === '1') { + return $numerator; + } + + return $this->numerator . '/' . $this->denominator; + } + + /** + * This method is required by interface Serializable and SHOULD NOT be accessed directly. + * + * @internal + * + * @return string + */ + public function serialize() : string + { + return $this->numerator . '/' . $this->denominator; + } + + /** + * This method is only here to implement interface Serializable and cannot be accessed directly. + * + * @internal + * + * @param string $value + * + * @return void + * + * @throws \LogicException + */ + public function unserialize($value) : void + { + if (isset($this->numerator)) { + throw new \LogicException('unserialize() is an internal function, it must not be called directly.'); + } + + [$numerator, $denominator] = \explode('/', $value); + + $this->numerator = BigInteger::of($numerator); + $this->denominator = BigInteger::of($denominator); + } +} diff --git a/vendor/brick/math/src/Exception/DivisionByZeroException.php b/vendor/brick/math/src/Exception/DivisionByZeroException.php new file mode 100644 index 000000000..a4e443176 --- /dev/null +++ b/vendor/brick/math/src/Exception/DivisionByZeroException.php @@ -0,0 +1,41 @@ + 126) { + $char = \strtoupper(\dechex($ord)); + + if ($ord < 10) { + $char = '0' . $char; + } + } else { + $char = '"' . $char . '"'; + } + + return new self(sprintf('Char %s is not a valid character in the given alphabet.', $char)); + } +} diff --git a/vendor/brick/math/src/Exception/RoundingNecessaryException.php b/vendor/brick/math/src/Exception/RoundingNecessaryException.php new file mode 100644 index 000000000..1c6100563 --- /dev/null +++ b/vendor/brick/math/src/Exception/RoundingNecessaryException.php @@ -0,0 +1,21 @@ +init($a, $b); + + if ($aNeg && ! $bNeg) { + return -1; + } + + if ($bNeg && ! $aNeg) { + return 1; + } + + $aLen = \strlen($aDig); + $bLen = \strlen($bDig); + + if ($aLen < $bLen) { + $result = -1; + } elseif ($aLen > $bLen) { + $result = 1; + } else { + $result = $aDig <=> $bDig; + } + + return $aNeg ? -$result : $result; + } + + /** + * Adds two numbers. + * + * @param string $a The augend. + * @param string $b The addend. + * + * @return string The sum. + */ + abstract public function add(string $a, string $b) : string; + + /** + * Subtracts two numbers. + * + * @param string $a The minuend. + * @param string $b The subtrahend. + * + * @return string The difference. + */ + abstract public function sub(string $a, string $b) : string; + + /** + * Multiplies two numbers. + * + * @param string $a The multiplicand. + * @param string $b The multiplier. + * + * @return string The product. + */ + abstract public function mul(string $a, string $b) : string; + + /** + * Returns the quotient of the division of two numbers. + * + * @param string $a The dividend. + * @param string $b The divisor, must not be zero. + * + * @return string The quotient. + */ + abstract public function divQ(string $a, string $b) : string; + + /** + * Returns the remainder of the division of two numbers. + * + * @param string $a The dividend. + * @param string $b The divisor, must not be zero. + * + * @return string The remainder. + */ + abstract public function divR(string $a, string $b) : string; + + /** + * Returns the quotient and remainder of the division of two numbers. + * + * @param string $a The dividend. + * @param string $b The divisor, must not be zero. + * + * @return string[] An array containing the quotient and remainder. + */ + abstract public function divQR(string $a, string $b) : array; + + /** + * Exponentiates a number. + * + * @param string $a The base number. + * @param int $e The exponent, validated as an integer between 0 and MAX_POWER. + * + * @return string The power. + */ + abstract public function pow(string $a, int $e) : string; + + /** + * @param string $a + * @param string $b The modulus; must not be zero. + * + * @return string + */ + public function mod(string $a, string $b) : string + { + return $this->divR($this->add($this->divR($a, $b), $b), $b); + } + + /** + * Returns the modular multiplicative inverse of $x modulo $m. + * + * If $x has no multiplicative inverse mod m, this method must return null. + * + * This method can be overridden by the concrete implementation if the underlying library has built-in support. + * + * @param string $x + * @param string $m The modulus; must not be negative or zero. + * + * @return string|null + */ + public function modInverse(string $x, string $m) : ?string + { + if ($m === '1') { + return '0'; + } + + $modVal = $x; + + if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) { + $modVal = $this->mod($x, $m); + } + + $x = '0'; + $y = '0'; + $g = $this->gcdExtended($modVal, $m, $x, $y); + + if ($g !== '1') { + return null; + } + + return $this->mod($this->add($this->mod($x, $m), $m), $m); + } + + /** + * Raises a number into power with modulo. + * + * @param string $base The base number; must be positive or zero. + * @param string $exp The exponent; must be positive or zero. + * @param string $mod The modulus; must be strictly positive. + * + * @return string The power. + */ + abstract public function modPow(string $base, string $exp, string $mod) : string; + + /** + * Returns the greatest common divisor of the two numbers. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for GCD calculations. + * + * @param string $a The first number. + * @param string $b The second number. + * + * @return string The GCD, always positive, or zero if both arguments are zero. + */ + public function gcd(string $a, string $b) : string + { + if ($a === '0') { + return $this->abs($b); + } + + if ($b === '0') { + return $this->abs($a); + } + + return $this->gcd($b, $this->divR($a, $b)); + } + + private function gcdExtended(string $a, string $b, string &$x, string &$y) : string + { + if ($a === '0') { + $x = '0'; + $y = '1'; + + return $b; + } + + $x1 = '0'; + $y1 = '0'; + + $gcd = $this->gcdExtended($this->mod($b, $a), $a, $x1, $y1); + + $x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1)); + $y = $x1; + + return $gcd; + } + + /** + * Returns the square root of the given number, rounded down. + * + * The result is the largest x such that x² ≤ n. + * The input MUST NOT be negative. + * + * @param string $n The number. + * + * @return string The square root. + */ + abstract public function sqrt(string $n) : string; + + /** + * Converts a number from an arbitrary base. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for base conversion. + * + * @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base. + * @param int $base The base of the number, validated from 2 to 36. + * + * @return string The converted number, following the Calculator conventions. + */ + public function fromBase(string $number, int $base) : string + { + return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base); + } + + /** + * Converts a number to an arbitrary base. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for base conversion. + * + * @param string $number The number to convert, following the Calculator conventions. + * @param int $base The base to convert to, validated from 2 to 36. + * + * @return string The converted number, lowercase. + */ + public function toBase(string $number, int $base) : string + { + $negative = ($number[0] === '-'); + + if ($negative) { + $number = \substr($number, 1); + } + + $number = $this->toArbitraryBase($number, self::ALPHABET, $base); + + if ($negative) { + return '-' . $number; + } + + return $number; + } + + /** + * Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10. + * + * @param string $number The number to convert, validated as a non-empty string, + * containing only chars in the given alphabet/base. + * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. + * @param int $base The base of the number, validated from 2 to alphabet length. + * + * @return string The number in base 10, following the Calculator conventions. + */ + final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string + { + // remove leading "zeros" + $number = \ltrim($number, $alphabet[0]); + + if ($number === '') { + return '0'; + } + + // optimize for "one" + if ($number === $alphabet[1]) { + return '1'; + } + + $result = '0'; + $power = '1'; + + $base = (string) $base; + + for ($i = \strlen($number) - 1; $i >= 0; $i--) { + $index = \strpos($alphabet, $number[$i]); + + if ($index !== 0) { + $result = $this->add($result, ($index === 1) + ? $power + : $this->mul($power, (string) $index) + ); + } + + if ($i !== 0) { + $power = $this->mul($power, $base); + } + } + + return $result; + } + + /** + * Converts a non-negative number to an arbitrary base using a custom alphabet. + * + * @param string $number The number to convert, positive or zero, following the Calculator conventions. + * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. + * @param int $base The base to convert to, validated from 2 to alphabet length. + * + * @return string The converted number in the given alphabet. + */ + final public function toArbitraryBase(string $number, string $alphabet, int $base) : string + { + if ($number === '0') { + return $alphabet[0]; + } + + $base = (string) $base; + $result = ''; + + while ($number !== '0') { + [$number, $remainder] = $this->divQR($number, $base); + $remainder = (int) $remainder; + + $result .= $alphabet[$remainder]; + } + + return \strrev($result); + } + + /** + * Performs a rounded division. + * + * Rounding is performed when the remainder of the division is not zero. + * + * @param string $a The dividend. + * @param string $b The divisor, must not be zero. + * @param int $roundingMode The rounding mode. + * + * @return string + * + * @throws \InvalidArgumentException If the rounding mode is invalid. + * @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary. + */ + final public function divRound(string $a, string $b, int $roundingMode) : string + { + [$quotient, $remainder] = $this->divQR($a, $b); + + $hasDiscardedFraction = ($remainder !== '0'); + $isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-'); + + $discardedFractionSign = function() use ($remainder, $b) : int { + $r = $this->abs($this->mul($remainder, '2')); + $b = $this->abs($b); + + return $this->cmp($r, $b); + }; + + $increment = false; + + switch ($roundingMode) { + case RoundingMode::UNNECESSARY: + if ($hasDiscardedFraction) { + throw RoundingNecessaryException::roundingNecessary(); + } + break; + + case RoundingMode::UP: + $increment = $hasDiscardedFraction; + break; + + case RoundingMode::DOWN: + break; + + case RoundingMode::CEILING: + $increment = $hasDiscardedFraction && $isPositiveOrZero; + break; + + case RoundingMode::FLOOR: + $increment = $hasDiscardedFraction && ! $isPositiveOrZero; + break; + + case RoundingMode::HALF_UP: + $increment = $discardedFractionSign() >= 0; + break; + + case RoundingMode::HALF_DOWN: + $increment = $discardedFractionSign() > 0; + break; + + case RoundingMode::HALF_CEILING: + $increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0; + break; + + case RoundingMode::HALF_FLOOR: + $increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; + break; + + case RoundingMode::HALF_EVEN: + $lastDigit = (int) $quotient[-1]; + $lastDigitIsEven = ($lastDigit % 2 === 0); + $increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; + break; + + default: + throw new \InvalidArgumentException('Invalid rounding mode.'); + } + + if ($increment) { + return $this->add($quotient, $isPositiveOrZero ? '1' : '-1'); + } + + return $quotient; + } + + /** + * Calculates bitwise AND of two numbers. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for bitwise operations. + * + * @param string $a + * @param string $b + * + * @return string + */ + public function and(string $a, string $b) : string + { + return $this->bitwise('and', $a, $b); + } + + /** + * Calculates bitwise OR of two numbers. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for bitwise operations. + * + * @param string $a + * @param string $b + * + * @return string + */ + public function or(string $a, string $b) : string + { + return $this->bitwise('or', $a, $b); + } + + /** + * Calculates bitwise XOR of two numbers. + * + * This method can be overridden by the concrete implementation if the underlying library + * has built-in support for bitwise operations. + * + * @param string $a + * @param string $b + * + * @return string + */ + public function xor(string $a, string $b) : string + { + return $this->bitwise('xor', $a, $b); + } + + /** + * Performs a bitwise operation on a decimal number. + * + * @param string $operator The operator to use, must be "and", "or" or "xor". + * @param string $a The left operand. + * @param string $b The right operand. + * + * @return string + */ + private function bitwise(string $operator, string $a, string $b) : string + { + [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); + + $aBin = $this->toBinary($aDig); + $bBin = $this->toBinary($bDig); + + $aLen = \strlen($aBin); + $bLen = \strlen($bBin); + + if ($aLen > $bLen) { + $bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin; + } elseif ($bLen > $aLen) { + $aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin; + } + + if ($aNeg) { + $aBin = $this->twosComplement($aBin); + } + if ($bNeg) { + $bBin = $this->twosComplement($bBin); + } + + switch ($operator) { + case 'and': + $value = $aBin & $bBin; + $negative = ($aNeg and $bNeg); + break; + + case 'or': + $value = $aBin | $bBin; + $negative = ($aNeg or $bNeg); + break; + + case 'xor': + $value = $aBin ^ $bBin; + $negative = ($aNeg xor $bNeg); + break; + + // @codeCoverageIgnoreStart + default: + throw new \InvalidArgumentException('Invalid bitwise operator.'); + // @codeCoverageIgnoreEnd + } + + if ($negative) { + $value = $this->twosComplement($value); + } + + $result = $this->toDecimal($value); + + return $negative ? $this->neg($result) : $result; + } + + /** + * @param string $number A positive, binary number. + * + * @return string + */ + private function twosComplement(string $number) : string + { + $xor = \str_repeat("\xff", \strlen($number)); + + $number = $number ^ $xor; + + for ($i = \strlen($number) - 1; $i >= 0; $i--) { + $byte = \ord($number[$i]); + + if (++$byte !== 256) { + $number[$i] = \chr($byte); + break; + } + + $number[$i] = "\x00"; + + if ($i === 0) { + $number = "\x01" . $number; + } + } + + return $number; + } + + /** + * Converts a decimal number to a binary string. + * + * @param string $number The number to convert, positive or zero, only digits. + * + * @return string + */ + private function toBinary(string $number) : string + { + $result = ''; + + while ($number !== '0') { + [$number, $remainder] = $this->divQR($number, '256'); + $result .= \chr((int) $remainder); + } + + return \strrev($result); + } + + /** + * Returns the positive decimal representation of a binary number. + * + * @param string $bytes The bytes representing the number. + * + * @return string + */ + private function toDecimal(string $bytes) : string + { + $result = '0'; + $power = '1'; + + for ($i = \strlen($bytes) - 1; $i >= 0; $i--) { + $index = \ord($bytes[$i]); + + if ($index !== 0) { + $result = $this->add($result, ($index === 1) + ? $power + : $this->mul($power, (string) $index) + ); + } + + if ($i !== 0) { + $power = $this->mul($power, '256'); + } + } + + return $result; + } +} diff --git a/vendor/brick/math/src/Internal/Calculator/BcMathCalculator.php b/vendor/brick/math/src/Internal/Calculator/BcMathCalculator.php new file mode 100644 index 000000000..c087245bd --- /dev/null +++ b/vendor/brick/math/src/Internal/Calculator/BcMathCalculator.php @@ -0,0 +1,92 @@ +maxDigits = 9; + break; + + case 8: + $this->maxDigits = 18; + break; + + default: + throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.'); + } + } + + /** + * {@inheritdoc} + */ + public function add(string $a, string $b) : string + { + $result = $a + $b; + + if (is_int($result)) { + return (string) $result; + } + + if ($a === '0') { + return $b; + } + + if ($b === '0') { + return $a; + } + + [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); + + if ($aNeg === $bNeg) { + $result = $this->doAdd($aDig, $bDig); + } else { + $result = $this->doSub($aDig, $bDig); + } + + if ($aNeg) { + $result = $this->neg($result); + } + + return $result; + } + + /** + * {@inheritdoc} + */ + public function sub(string $a, string $b) : string + { + return $this->add($a, $this->neg($b)); + } + + /** + * {@inheritdoc} + */ + public function mul(string $a, string $b) : string + { + $result = $a * $b; + + if (is_int($result)) { + return (string) $result; + } + + if ($a === '0' || $b === '0') { + return '0'; + } + + if ($a === '1') { + return $b; + } + + if ($b === '1') { + return $a; + } + + if ($a === '-1') { + return $this->neg($b); + } + + if ($b === '-1') { + return $this->neg($a); + } + + [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); + + $result = $this->doMul($aDig, $bDig); + + if ($aNeg !== $bNeg) { + $result = $this->neg($result); + } + + return $result; + } + + /** + * {@inheritdoc} + */ + public function divQ(string $a, string $b) : string + { + return $this->divQR($a, $b)[0]; + } + + /** + * {@inheritdoc} + */ + public function divR(string $a, string $b): string + { + return $this->divQR($a, $b)[1]; + } + + /** + * {@inheritdoc} + */ + public function divQR(string $a, string $b) : array + { + if ($a === '0') { + return ['0', '0']; + } + + if ($a === $b) { + return ['1', '0']; + } + + if ($b === '1') { + return [$a, '0']; + } + + if ($b === '-1') { + return [$this->neg($a), '0']; + } + + $na = $a * 1; // cast to number + + if (is_int($na)) { + $nb = $b * 1; + + if (is_int($nb)) { + // the only division that may overflow is PHP_INT_MIN / -1, + // which cannot happen here as we've already handled a divisor of -1 above. + $r = $na % $nb; + $q = ($na - $r) / $nb; + + assert(is_int($q)); + + return [ + (string) $q, + (string) $r + ]; + } + } + + [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); + + [$q, $r] = $this->doDiv($aDig, $bDig); + + if ($aNeg !== $bNeg) { + $q = $this->neg($q); + } + + if ($aNeg) { + $r = $this->neg($r); + } + + return [$q, $r]; + } + + /** + * {@inheritdoc} + */ + public function pow(string $a, int $e) : string + { + if ($e === 0) { + return '1'; + } + + if ($e === 1) { + return $a; + } + + $odd = $e % 2; + $e -= $odd; + + $aa = $this->mul($a, $a); + $result = $this->pow($aa, $e / 2); + + if ($odd === 1) { + $result = $this->mul($result, $a); + } + + return $result; + } + + /** + * Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/ + * + * {@inheritdoc} + */ + public function modPow(string $base, string $exp, string $mod) : string + { + // special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0) + if ($base === '0' && $exp === '0' && $mod === '1') { + return '0'; + } + + // special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0) + if ($exp === '0' && $mod === '1') { + return '0'; + } + + $x = $base; + + $res = '1'; + + // numbers are positive, so we can use remainder instead of modulo + $x = $this->divR($x, $mod); + + while ($exp !== '0') { + if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd + $res = $this->divR($this->mul($res, $x), $mod); + } + + $exp = $this->divQ($exp, '2'); + $x = $this->divR($this->mul($x, $x), $mod); + } + + return $res; + } + + /** + * Adapted from https://cp-algorithms.com/num_methods/roots_newton.html + * + * {@inheritDoc} + */ + public function sqrt(string $n) : string + { + if ($n === '0') { + return '0'; + } + + // initial approximation + $x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1); + + $decreased = false; + + for (;;) { + $nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2'); + + if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) { + break; + } + + $decreased = $this->cmp($nx, $x) < 0; + $x = $nx; + } + + return $x; + } + + /** + * Performs the addition of two non-signed large integers. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return string + */ + private function doAdd(string $a, string $b) : string + { + [$a, $b, $length] = $this->pad($a, $b); + + $carry = 0; + $result = ''; + + for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { + $blockLength = $this->maxDigits; + + if ($i < 0) { + $blockLength += $i; + $i = 0; + } + + $blockA = \substr($a, $i, $blockLength); + $blockB = \substr($b, $i, $blockLength); + + $sum = (string) ($blockA + $blockB + $carry); + $sumLength = \strlen($sum); + + if ($sumLength > $blockLength) { + $sum = \substr($sum, 1); + $carry = 1; + } else { + if ($sumLength < $blockLength) { + $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; + } + $carry = 0; + } + + $result = $sum . $result; + + if ($i === 0) { + break; + } + } + + if ($carry === 1) { + $result = '1' . $result; + } + + return $result; + } + + /** + * Performs the subtraction of two non-signed large integers. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return string + */ + private function doSub(string $a, string $b) : string + { + if ($a === $b) { + return '0'; + } + + // Ensure that we always subtract to a positive result: biggest minus smallest. + $cmp = $this->doCmp($a, $b); + + $invert = ($cmp === -1); + + if ($invert) { + $c = $a; + $a = $b; + $b = $c; + } + + [$a, $b, $length] = $this->pad($a, $b); + + $carry = 0; + $result = ''; + + $complement = 10 ** $this->maxDigits; + + for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { + $blockLength = $this->maxDigits; + + if ($i < 0) { + $blockLength += $i; + $i = 0; + } + + $blockA = \substr($a, $i, $blockLength); + $blockB = \substr($b, $i, $blockLength); + + $sum = $blockA - $blockB - $carry; + + if ($sum < 0) { + $sum += $complement; + $carry = 1; + } else { + $carry = 0; + } + + $sum = (string) $sum; + $sumLength = \strlen($sum); + + if ($sumLength < $blockLength) { + $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; + } + + $result = $sum . $result; + + if ($i === 0) { + break; + } + } + + // Carry cannot be 1 when the loop ends, as a > b + assert($carry === 0); + + $result = \ltrim($result, '0'); + + if ($invert) { + $result = $this->neg($result); + } + + return $result; + } + + /** + * Performs the multiplication of two non-signed large integers. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return string + */ + private function doMul(string $a, string $b) : string + { + $x = \strlen($a); + $y = \strlen($b); + + $maxDigits = \intdiv($this->maxDigits, 2); + $complement = 10 ** $maxDigits; + + $result = '0'; + + for ($i = $x - $maxDigits;; $i -= $maxDigits) { + $blockALength = $maxDigits; + + if ($i < 0) { + $blockALength += $i; + $i = 0; + } + + $blockA = (int) \substr($a, $i, $blockALength); + + $line = ''; + $carry = 0; + + for ($j = $y - $maxDigits;; $j -= $maxDigits) { + $blockBLength = $maxDigits; + + if ($j < 0) { + $blockBLength += $j; + $j = 0; + } + + $blockB = (int) \substr($b, $j, $blockBLength); + + $mul = $blockA * $blockB + $carry; + $value = $mul % $complement; + $carry = ($mul - $value) / $complement; + + $value = (string) $value; + $value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT); + + $line = $value . $line; + + if ($j === 0) { + break; + } + } + + if ($carry !== 0) { + $line = $carry . $line; + } + + $line = \ltrim($line, '0'); + + if ($line !== '') { + $line .= \str_repeat('0', $x - $blockALength - $i); + $result = $this->add($result, $line); + } + + if ($i === 0) { + break; + } + } + + return $result; + } + + /** + * Performs the division of two non-signed large integers. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return string[] The quotient and remainder. + */ + private function doDiv(string $a, string $b) : array + { + $cmp = $this->doCmp($a, $b); + + if ($cmp === -1) { + return ['0', $a]; + } + + $x = \strlen($a); + $y = \strlen($b); + + // we now know that a >= b && x >= y + + $q = '0'; // quotient + $r = $a; // remainder + $z = $y; // focus length, always $y or $y+1 + + for (;;) { + $focus = \substr($a, 0, $z); + + $cmp = $this->doCmp($focus, $b); + + if ($cmp === -1) { + if ($z === $x) { // remainder < dividend + break; + } + + $z++; + } + + $zeros = \str_repeat('0', $x - $z); + + $q = $this->add($q, '1' . $zeros); + $a = $this->sub($a, $b . $zeros); + + $r = $a; + + if ($r === '0') { // remainder == 0 + break; + } + + $x = \strlen($a); + + if ($x < $y) { // remainder < dividend + break; + } + + $z = $y; + } + + return [$q, $r]; + } + + /** + * Compares two non-signed large numbers. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return int [-1, 0, 1] + */ + private function doCmp(string $a, string $b) : int + { + $x = \strlen($a); + $y = \strlen($b); + + $cmp = $x <=> $y; + + if ($cmp !== 0) { + return $cmp; + } + + return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1] + } + + /** + * Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length. + * + * The numbers must only consist of digits, without leading minus sign. + * + * @param string $a The first operand. + * @param string $b The second operand. + * + * @return array{0: string, 1: string, 2: int} + */ + private function pad(string $a, string $b) : array + { + $x = \strlen($a); + $y = \strlen($b); + + if ($x > $y) { + $b = \str_repeat('0', $x - $y) . $b; + + return [$a, $b, $x]; + } + + if ($x < $y) { + $a = \str_repeat('0', $y - $x) . $a; + + return [$a, $b, $y]; + } + + return [$a, $b, $x]; + } +} diff --git a/vendor/brick/math/src/RoundingMode.php b/vendor/brick/math/src/RoundingMode.php new file mode 100644 index 000000000..06936d8db --- /dev/null +++ b/vendor/brick/math/src/RoundingMode.php @@ -0,0 +1,107 @@ += 0.5; otherwise, behaves as for DOWN. + * Note that this is the rounding mode commonly taught at school. + */ + public const HALF_UP = 5; + + /** + * Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round down. + * + * Behaves as for UP if the discarded fraction is > 0.5; otherwise, behaves as for DOWN. + */ + public const HALF_DOWN = 6; + + /** + * Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round towards positive infinity. + * + * If the result is positive, behaves as for HALF_UP; if negative, behaves as for HALF_DOWN. + */ + public const HALF_CEILING = 7; + + /** + * Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round towards negative infinity. + * + * If the result is positive, behaves as for HALF_DOWN; if negative, behaves as for HALF_UP. + */ + public const HALF_FLOOR = 8; + + /** + * Rounds towards the "nearest neighbor" unless both neighbors are equidistant, in which case rounds towards the even neighbor. + * + * Behaves as for HALF_UP if the digit to the left of the discarded fraction is odd; + * behaves as for HALF_DOWN if it's even. + * + * Note that this is the rounding mode that statistically minimizes + * cumulative error when applied repeatedly over a sequence of calculations. + * It is sometimes known as "Banker's rounding", and is chiefly used in the USA. + */ + public const HALF_EVEN = 9; +} -- cgit v1.2.3