/* ======================================== * curve - curve.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __curve_H #include "curve.h" #endif void curve::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37; if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37; inputSampleL *= 0.5; inputSampleR *= 0.5; if (gain < 0.0078125) gain = 0.0078125; if (gain > 1.0) gain = 1.0; //gain of 1,0 gives you a super-clean one, gain of 2 is obviously compressing //smaller number is maximum clamping, if too small it'll take a while to bounce back inputSampleL *= gain; inputSampleR *= gain; gain += sin((fabs(inputSampleL*4)>1)?4:fabs(inputSampleL*4))*pow(inputSampleL,4); gain += sin((fabs(inputSampleR*4)>1)?4:fabs(inputSampleR*4))*pow(inputSampleR,4); //4.71239 radians sined will turn to -1 which is the maximum gain reduction speed inputSampleL *= 2.0; inputSampleR *= 2.0; //begin 32 bit stereo floating point dither int expon; frexpf((float)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); frexpf((float)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void curve::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43; if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43; inputSampleL *= 0.5; inputSampleR *= 0.5; if (gain < 0.0078125) gain = 0.0078125; if (gain > 1.0) gain = 1.0; //gain of 1,0 gives you a super-clean one, gain of 2 is obviously compressing //smaller number is maximum clamping, if too small it'll take a while to bounce back inputSampleL *= gain; inputSampleR *= gain; gain += sin((fabs(inputSampleL*4)>1)?4:fabs(inputSampleL*4))*pow(inputSampleL,4); gain += sin((fabs(inputSampleR*4)>1)?4:fabs(inputSampleR*4))*pow(inputSampleR,4); //4.71239 radians sined will turn to -1 which is the maximum gain reduction speed inputSampleL *= 2.0; inputSampleR *= 2.0; //begin 64 bit stereo floating point dither int expon; frexp((double)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); frexp((double)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); //end 64 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }