/* ======================================== * VoiceOfTheStarship - VoiceOfTheStarship.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __VoiceOfTheStarship_H #include "VoiceOfTheStarship.h" #endif void VoiceOfTheStarship::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double cutoff = pow((A*0.89)+0.1,3); if (cutoff > 1.0) cutoff = 1.0; double invcutoff = 1.0 - cutoff; //this is the lowpass double overallscale = ((1.0-A)*9.0)+1.0; double gain = overallscale; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //this is the moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; //and now it's neatly scaled, too int lowcut = floor(B*16.9); if (lastAlgorithm != lowcut) { noiseAL = 0.0; noiseBL = 0.0; noiseCL = 0.0; noiseAR = 0.0; noiseBR = 0.0; noiseCR = 0.0; for(int count = 0; count < 11; count++) {bL[count] = 0.0; bR[count] = 0.0;} lastAlgorithm = lowcut; } //cuts the noise back to 0 if we are changing algorithms, //because that also changes gains and can make loud pops. //We still get pops, but they'd be even worse int dcut; if (lowcut > 15) {lowcut = 1151; dcut= 11517;} if (lowcut == 15) {lowcut = 113; dcut= 1151;} if (lowcut == 14) {lowcut = 71; dcut= 719;} if (lowcut == 13) {lowcut = 53; dcut= 541;} if (lowcut == 12) {lowcut = 31; dcut= 311;} if (lowcut == 11) {lowcut = 23; dcut= 233;} if (lowcut == 10) {lowcut = 19; dcut= 191;} if (lowcut == 9) {lowcut = 17; dcut= 173;} if (lowcut == 8) {lowcut = 13; dcut= 131;} if (lowcut == 7) {lowcut = 11; dcut= 113;} if (lowcut == 6) {lowcut = 7; dcut= 79;} if (lowcut == 5) {lowcut = 6; dcut= 67;} if (lowcut == 4) {lowcut = 5; dcut= 59;} if (lowcut == 3) {lowcut = 4; dcut= 43;} if (lowcut == 2) {lowcut = 3; dcut= 37;} if (lowcut == 1) {lowcut = 2; dcut= 23;} if (lowcut < 1) {lowcut = 1; dcut= 11;} //this is the mechanism for cutting back subs without filtering double rumbletrim = sqrt(lowcut); //this among other things is just to give volume compensation double inputSampleL; double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; //we then ignore this! quadratic -= 1; if (quadratic < 0) { position += 1; quadratic = position * position; quadratic = quadratic % 170003; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 17011; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 1709; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % dcut; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % lowcut; //sets density of the centering force if (noiseAL < 0) {flipL = true;} else {flipL = false;} if (noiseAR < 0) {flipR = true;} else {flipR = false;} //every time we come here, we force the random walk to be //toward the center of the waveform. Without this, //it's a pure random walk that will generate DC. } if (flipL) noiseAL += (rand()/(double)RAND_MAX); else noiseAL -= (rand()/(double)RAND_MAX); if (flipR) noiseAR += (rand()/(double)RAND_MAX); else noiseAR -= (rand()/(double)RAND_MAX); //here's the guts of the random walk if (filterflip) { noiseBL *= invcutoff; noiseBL += (noiseAL*cutoff); inputSampleL = noiseBL; noiseBR *= invcutoff; noiseBR += (noiseAR*cutoff); inputSampleR = noiseBR; } else { noiseCL *= invcutoff; noiseCL += (noiseAL*cutoff); inputSampleL = noiseCL; noiseCR *= invcutoff; noiseCR += (noiseAR*cutoff); inputSampleR = noiseCR; } //now we have the output of the filter as inputSample. //this filter is shallower than a straight IIR: it's interleaved bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR; inputSampleL *= f[0]; inputSampleL += (bL[1] * f[1]); inputSampleL += (bL[2] * f[2]); inputSampleL += (bL[3] * f[3]); inputSampleL += (bL[4] * f[4]); inputSampleL += (bL[5] * f[5]); inputSampleL += (bL[6] * f[6]); inputSampleL += (bL[7] * f[7]); inputSampleL += (bL[8] * f[8]); inputSampleL += (bL[9] * f[9]); inputSampleR *= f[0]; inputSampleR += (bR[1] * f[1]); inputSampleR += (bR[2] * f[2]); inputSampleR += (bR[3] * f[3]); inputSampleR += (bR[4] * f[4]); inputSampleR += (bR[5] * f[5]); inputSampleR += (bR[6] * f[6]); inputSampleR += (bR[7] * f[7]); inputSampleR += (bR[8] * f[8]); inputSampleR += (bR[9] * f[9]); inputSampleL *= 0.1; inputSampleR *= 0.1; inputSampleL *= invcutoff; inputSampleR *= invcutoff; inputSampleL /= rumbletrim; inputSampleR /= rumbletrim; flipL = !flipL; flipR = !flipR; filterflip = !filterflip; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void VoiceOfTheStarship::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double cutoff = pow((A*0.89)+0.1,3); if (cutoff > 1.0) cutoff = 1.0; double invcutoff = 1.0 - cutoff; //this is the lowpass double overallscale = ((1.0-A)*9.0)+1.0; double gain = overallscale; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //this is the moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; //and now it's neatly scaled, too int lowcut = floor(B*16.9); if (lastAlgorithm != lowcut) { noiseAL = 0.0; noiseBL = 0.0; noiseCL = 0.0; noiseAR = 0.0; noiseBR = 0.0; noiseCR = 0.0; for(int count = 0; count < 11; count++) {bL[count] = 0.0; bR[count] = 0.0;} lastAlgorithm = lowcut; } //cuts the noise back to 0 if we are changing algorithms, //because that also changes gains and can make loud pops. //We still get pops, but they'd be even worse int dcut; if (lowcut > 15) {lowcut = 1151; dcut= 11517;} if (lowcut == 15) {lowcut = 113; dcut= 1151;} if (lowcut == 14) {lowcut = 71; dcut= 719;} if (lowcut == 13) {lowcut = 53; dcut= 541;} if (lowcut == 12) {lowcut = 31; dcut= 311;} if (lowcut == 11) {lowcut = 23; dcut= 233;} if (lowcut == 10) {lowcut = 19; dcut= 191;} if (lowcut == 9) {lowcut = 17; dcut= 173;} if (lowcut == 8) {lowcut = 13; dcut= 131;} if (lowcut == 7) {lowcut = 11; dcut= 113;} if (lowcut == 6) {lowcut = 7; dcut= 79;} if (lowcut == 5) {lowcut = 6; dcut= 67;} if (lowcut == 4) {lowcut = 5; dcut= 59;} if (lowcut == 3) {lowcut = 4; dcut= 43;} if (lowcut == 2) {lowcut = 3; dcut= 37;} if (lowcut == 1) {lowcut = 2; dcut= 23;} if (lowcut < 1) {lowcut = 1; dcut= 11;} //this is the mechanism for cutting back subs without filtering double rumbletrim = sqrt(lowcut); //this among other things is just to give volume compensation double inputSampleL; double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; //we then ignore this! quadratic -= 1; if (quadratic < 0) { position += 1; quadratic = position * position; quadratic = quadratic % 170003; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 17011; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 1709; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % dcut; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % lowcut; //sets density of the centering force if (noiseAL < 0) {flipL = true;} else {flipL = false;} if (noiseAR < 0) {flipR = true;} else {flipR = false;} //every time we come here, we force the random walk to be //toward the center of the waveform. Without this, //it's a pure random walk that will generate DC. } if (flipL) noiseAL += (rand()/(double)RAND_MAX); else noiseAL -= (rand()/(double)RAND_MAX); if (flipR) noiseAR += (rand()/(double)RAND_MAX); else noiseAR -= (rand()/(double)RAND_MAX); //here's the guts of the random walk if (filterflip) { noiseBL *= invcutoff; noiseBL += (noiseAL*cutoff); inputSampleL = noiseBL; noiseBR *= invcutoff; noiseBR += (noiseAR*cutoff); inputSampleR = noiseBR; } else { noiseCL *= invcutoff; noiseCL += (noiseAL*cutoff); inputSampleL = noiseCL; noiseCR *= invcutoff; noiseCR += (noiseAR*cutoff); inputSampleR = noiseCR; } //now we have the output of the filter as inputSample. //this filter is shallower than a straight IIR: it's interleaved bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR; inputSampleL *= f[0]; inputSampleL += (bL[1] * f[1]); inputSampleL += (bL[2] * f[2]); inputSampleL += (bL[3] * f[3]); inputSampleL += (bL[4] * f[4]); inputSampleL += (bL[5] * f[5]); inputSampleL += (bL[6] * f[6]); inputSampleL += (bL[7] * f[7]); inputSampleL += (bL[8] * f[8]); inputSampleL += (bL[9] * f[9]); inputSampleR *= f[0]; inputSampleR += (bR[1] * f[1]); inputSampleR += (bR[2] * f[2]); inputSampleR += (bR[3] * f[3]); inputSampleR += (bR[4] * f[4]); inputSampleR += (bR[5] * f[5]); inputSampleR += (bR[6] * f[6]); inputSampleR += (bR[7] * f[7]); inputSampleR += (bR[8] * f[8]); inputSampleR += (bR[9] * f[9]); inputSampleL *= 0.1; inputSampleR *= 0.1; inputSampleL *= invcutoff; inputSampleR *= invcutoff; inputSampleL /= rumbletrim; inputSampleR /= rumbletrim; flipL = !flipL; flipR = !flipR; filterflip = !filterflip; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }