/* ======================================== * VariMu - VariMu.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __VariMu_H #include "VariMu.h" #endif void VariMu::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 2.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double threshold = 1.001 - (1.0-pow(1.0-A,3)); double muMakeupGain = sqrt(1.0 / threshold); muMakeupGain = (muMakeupGain + sqrt(muMakeupGain))/2.0; muMakeupGain = sqrt(muMakeupGain); double outGain = sqrt(muMakeupGain); //gain settings around threshold double release = pow((1.15-B),5)*32768.0; release /= overallscale; double fastest = sqrt(release); //speed settings around release double coefficient; double output = outGain * C; double wet = D; long double squaredSampleL; long double squaredSampleR; // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aVariMu. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (fabs(inputSampleL) > fabs(previousL)) squaredSampleL = previousL * previousL; else squaredSampleL = inputSampleL * inputSampleL; previousL = inputSampleL; inputSampleL *= muMakeupGain; if (fabs(inputSampleR) > fabs(previousR)) squaredSampleR = previousR * previousR; else squaredSampleR = inputSampleR * inputSampleR; previousR = inputSampleR; inputSampleR *= muMakeupGain; //adjust coefficients for L if (flip) { if (fabs(squaredSampleL) > threshold) { muVaryL = threshold / fabs(squaredSampleL); muAttackL = sqrt(fabs(muSpeedAL)); muCoefficientAL = muCoefficientAL * (muAttackL-1.0); if (muVaryL < threshold) { muCoefficientAL = muCoefficientAL + threshold; } else { muCoefficientAL = muCoefficientAL + muVaryL; } muCoefficientAL = muCoefficientAL / muAttackL; } else { muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0); muCoefficientAL = muCoefficientAL + 1.0; muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL); } muNewSpeedL = muSpeedAL * (muSpeedAL-1); muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest; muSpeedAL = muNewSpeedL / muSpeedAL; } else { if (fabs(squaredSampleL) > threshold) { muVaryL = threshold / fabs(squaredSampleL); muAttackL = sqrt(fabs(muSpeedBL)); muCoefficientBL = muCoefficientBL * (muAttackL-1); if (muVaryL < threshold) { muCoefficientBL = muCoefficientBL + threshold; } else { muCoefficientBL = muCoefficientBL + muVaryL; } muCoefficientBL = muCoefficientBL / muAttackL; } else { muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0); muCoefficientBL = muCoefficientBL + 1.0; muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL); } muNewSpeedL = muSpeedBL * (muSpeedBL-1); muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest; muSpeedBL = muNewSpeedL / muSpeedBL; } //got coefficients, adjusted speeds for L //adjust coefficients for R if (flip) { if (fabs(squaredSampleR) > threshold) { muVaryR = threshold / fabs(squaredSampleR); muAttackR = sqrt(fabs(muSpeedAR)); muCoefficientAR = muCoefficientAR * (muAttackR-1.0); if (muVaryR < threshold) { muCoefficientAR = muCoefficientAR + threshold; } else { muCoefficientAR = muCoefficientAR + muVaryR; } muCoefficientAR = muCoefficientAR / muAttackR; } else { muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0); muCoefficientAR = muCoefficientAR + 1.0; muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR); } muNewSpeedR = muSpeedAR * (muSpeedAR-1); muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest; muSpeedAR = muNewSpeedR / muSpeedAR; } else { if (fabs(squaredSampleR) > threshold) { muVaryR = threshold / fabs(squaredSampleR); muAttackR = sqrt(fabs(muSpeedBR)); muCoefficientBR = muCoefficientBR * (muAttackR-1); if (muVaryR < threshold) { muCoefficientBR = muCoefficientBR + threshold; } else { muCoefficientBR = muCoefficientBR + muVaryR; } muCoefficientBR = muCoefficientBR / muAttackR; } else { muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0); muCoefficientBR = muCoefficientBR + 1.0; muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR); } muNewSpeedR = muSpeedBR * (muSpeedBR-1); muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest; muSpeedBR = muNewSpeedR / muSpeedBR; } //got coefficients, adjusted speeds for R if (flip) { coefficient = (muCoefficientAL + pow(muCoefficientAL,2))/2.0; inputSampleL *= coefficient; coefficient = (muCoefficientAR + pow(muCoefficientAR,2))/2.0; inputSampleR *= coefficient; } else { coefficient = (muCoefficientBL + pow(muCoefficientBL,2))/2.0; inputSampleL *= coefficient; coefficient = (muCoefficientBR + pow(muCoefficientBR,2))/2.0; inputSampleR *= coefficient; } //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it flip = !flip; if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet); inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void VariMu::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 2.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double threshold = 1.001 - (1.0-pow(1.0-A,3)); double muMakeupGain = sqrt(1.0 / threshold); muMakeupGain = (muMakeupGain + sqrt(muMakeupGain))/2.0; muMakeupGain = sqrt(muMakeupGain); double outGain = sqrt(muMakeupGain); //gain settings around threshold double release = pow((1.15-B),5)*32768.0; release /= overallscale; double fastest = sqrt(release); //speed settings around release double coefficient; double output = outGain * C; double wet = D; long double squaredSampleL; long double squaredSampleR; // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aVariMu. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (fabs(inputSampleL) > fabs(previousL)) squaredSampleL = previousL * previousL; else squaredSampleL = inputSampleL * inputSampleL; previousL = inputSampleL; inputSampleL *= muMakeupGain; if (fabs(inputSampleR) > fabs(previousR)) squaredSampleR = previousR * previousR; else squaredSampleR = inputSampleR * inputSampleR; previousR = inputSampleR; inputSampleR *= muMakeupGain; //adjust coefficients for L if (flip) { if (fabs(squaredSampleL) > threshold) { muVaryL = threshold / fabs(squaredSampleL); muAttackL = sqrt(fabs(muSpeedAL)); muCoefficientAL = muCoefficientAL * (muAttackL-1.0); if (muVaryL < threshold) { muCoefficientAL = muCoefficientAL + threshold; } else { muCoefficientAL = muCoefficientAL + muVaryL; } muCoefficientAL = muCoefficientAL / muAttackL; } else { muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0); muCoefficientAL = muCoefficientAL + 1.0; muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL); } muNewSpeedL = muSpeedAL * (muSpeedAL-1); muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest; muSpeedAL = muNewSpeedL / muSpeedAL; } else { if (fabs(squaredSampleL) > threshold) { muVaryL = threshold / fabs(squaredSampleL); muAttackL = sqrt(fabs(muSpeedBL)); muCoefficientBL = muCoefficientBL * (muAttackL-1); if (muVaryL < threshold) { muCoefficientBL = muCoefficientBL + threshold; } else { muCoefficientBL = muCoefficientBL + muVaryL; } muCoefficientBL = muCoefficientBL / muAttackL; } else { muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0); muCoefficientBL = muCoefficientBL + 1.0; muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL); } muNewSpeedL = muSpeedBL * (muSpeedBL-1); muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest; muSpeedBL = muNewSpeedL / muSpeedBL; } //got coefficients, adjusted speeds for L //adjust coefficients for R if (flip) { if (fabs(squaredSampleR) > threshold) { muVaryR = threshold / fabs(squaredSampleR); muAttackR = sqrt(fabs(muSpeedAR)); muCoefficientAR = muCoefficientAR * (muAttackR-1.0); if (muVaryR < threshold) { muCoefficientAR = muCoefficientAR + threshold; } else { muCoefficientAR = muCoefficientAR + muVaryR; } muCoefficientAR = muCoefficientAR / muAttackR; } else { muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0); muCoefficientAR = muCoefficientAR + 1.0; muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR); } muNewSpeedR = muSpeedAR * (muSpeedAR-1); muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest; muSpeedAR = muNewSpeedR / muSpeedAR; } else { if (fabs(squaredSampleR) > threshold) { muVaryR = threshold / fabs(squaredSampleR); muAttackR = sqrt(fabs(muSpeedBR)); muCoefficientBR = muCoefficientBR * (muAttackR-1); if (muVaryR < threshold) { muCoefficientBR = muCoefficientBR + threshold; } else { muCoefficientBR = muCoefficientBR + muVaryR; } muCoefficientBR = muCoefficientBR / muAttackR; } else { muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0); muCoefficientBR = muCoefficientBR + 1.0; muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR); } muNewSpeedR = muSpeedBR * (muSpeedBR-1); muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest; muSpeedBR = muNewSpeedR / muSpeedBR; } //got coefficients, adjusted speeds for R if (flip) { coefficient = (muCoefficientAL + pow(muCoefficientAL,2))/2.0; inputSampleL *= coefficient; coefficient = (muCoefficientAR + pow(muCoefficientAR,2))/2.0; inputSampleR *= coefficient; } else { coefficient = (muCoefficientBL + pow(muCoefficientBL,2))/2.0; inputSampleL *= coefficient; coefficient = (muCoefficientBR + pow(muCoefficientBR,2))/2.0; inputSampleR *= coefficient; } //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it flip = !flip; if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet); inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }