/* ======================================== * UnBox - UnBox.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __UnBox_H #include "UnBox.h" #endif void UnBox::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double input = A*2.0; double unbox = B+1.0; unbox *= unbox; //let's get some more gain into this double iirAmount = (unbox*0.00052)/overallscale; double output = C*2.0; double treble = unbox; //averaging taps 1-4 double gain = treble; if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;} if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;} if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;} if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;} if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (treble < 1.0) treble = 1.0; e[0] /= treble; e[1] /= treble; e[2] /= treble; e[3] /= treble; e[4] /= treble; //and now it's neatly scaled, too treble = unbox*2.0; //averaging taps 1-8 gain = treble; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (treble < 1.0) treble = 1.0; f[0] /= treble; f[1] /= treble; f[2] /= treble; f[3] /= treble; f[4] /= treble; f[5] /= treble; f[6] /= treble; f[7] /= treble; f[8] /= treble; f[9] /= treble; //and now it's neatly scaled, too while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;} static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1]; aL[1] = aL[0]; aL[0] = inputSampleL; inputSampleL *= e[0]; inputSampleL += (aL[1] * e[1]); inputSampleL += (aL[2] * e[2]); inputSampleL += (aL[3] * e[3]); inputSampleL += (aL[4] * e[4]); //this is now an average of inputSampleL aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1]; aR[1] = aR[0]; aR[0] = inputSampleR; inputSampleR *= e[0]; inputSampleR += (aR[1] * e[1]); inputSampleR += (aR[2] * e[2]); inputSampleR += (aR[3] * e[3]); inputSampleR += (aR[4] * e[4]); //this is now an average of inputSampleR bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL; inputSampleL *= e[0]; inputSampleL += (bL[1] * e[1]); inputSampleL += (bL[2] * e[2]); inputSampleL += (bL[3] * e[3]); inputSampleL += (bL[4] * e[4]); //this is now an average of an average of inputSampleL. Two poles bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR; inputSampleR *= e[0]; inputSampleR += (bR[1] * e[1]); inputSampleR += (bR[2] * e[2]); inputSampleR += (bR[3] * e[3]); inputSampleR += (bR[4] * e[4]); //this is now an average of an average of inputSampleR. Two poles inputSampleL *= unbox; inputSampleR *= unbox; //clip to 1.2533141373155 to reach maximum output if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); inputSampleL /= unbox; inputSampleR /= unbox; //now we have a distorted inputSample at the correct volume relative to drySample long double accumulatorSampleL = (drySampleL - inputSampleL); cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5]; cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1]; cL[1] = cL[0]; cL[0] = accumulatorSampleL; accumulatorSampleL *= f[0]; accumulatorSampleL += (cL[1] * f[1]); accumulatorSampleL += (cL[2] * f[2]); accumulatorSampleL += (cL[3] * f[3]); accumulatorSampleL += (cL[4] * f[4]); accumulatorSampleL += (cL[5] * f[5]); accumulatorSampleL += (cL[6] * f[6]); accumulatorSampleL += (cL[7] * f[7]); accumulatorSampleL += (cL[8] * f[8]); accumulatorSampleL += (cL[9] * f[9]); //this is now an average of all the recent variances from dry long double accumulatorSampleR = (drySampleR - inputSampleR); cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5]; cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1]; cR[1] = cR[0]; cR[0] = accumulatorSampleR; accumulatorSampleR *= f[0]; accumulatorSampleR += (cR[1] * f[1]); accumulatorSampleR += (cR[2] * f[2]); accumulatorSampleR += (cR[3] * f[3]); accumulatorSampleR += (cR[4] * f[4]); accumulatorSampleR += (cR[5] * f[5]); accumulatorSampleR += (cR[6] * f[6]); accumulatorSampleR += (cR[7] * f[7]); accumulatorSampleR += (cR[8] * f[8]); accumulatorSampleR += (cR[9] * f[9]); //this is now an average of all the recent variances from dry iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount); accumulatorSampleL -= iirSampleAL; //two poles of IIR iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount); accumulatorSampleR -= iirSampleAR; //two poles of IIR iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount); accumulatorSampleL -= iirSampleBL; //highpass section iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount); accumulatorSampleR -= iirSampleBR; //highpass section //this is now a highpassed average of all the recent variances from dry inputSampleL = drySampleL - accumulatorSampleL; inputSampleR = drySampleR - accumulatorSampleR; //we apply it as one operation, to get the result. if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;} //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void UnBox::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double input = A*2.0; double unbox = B+1.0; unbox *= unbox; //let's get some more gain into this double iirAmount = (unbox*0.00052)/overallscale; double output = C*2.0; double treble = unbox; //averaging taps 1-4 double gain = treble; if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;} if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;} if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;} if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;} if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (treble < 1.0) treble = 1.0; e[0] /= treble; e[1] /= treble; e[2] /= treble; e[3] /= treble; e[4] /= treble; //and now it's neatly scaled, too treble = unbox*2.0; //averaging taps 1-8 gain = treble; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (treble < 1.0) treble = 1.0; f[0] /= treble; f[1] /= treble; f[2] /= treble; f[3] /= treble; f[4] /= treble; f[5] /= treble; f[6] /= treble; f[7] /= treble; f[8] /= treble; f[9] /= treble; //and now it's neatly scaled, too while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;} static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1]; aL[1] = aL[0]; aL[0] = inputSampleL; inputSampleL *= e[0]; inputSampleL += (aL[1] * e[1]); inputSampleL += (aL[2] * e[2]); inputSampleL += (aL[3] * e[3]); inputSampleL += (aL[4] * e[4]); //this is now an average of inputSampleL aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1]; aR[1] = aR[0]; aR[0] = inputSampleR; inputSampleR *= e[0]; inputSampleR += (aR[1] * e[1]); inputSampleR += (aR[2] * e[2]); inputSampleR += (aR[3] * e[3]); inputSampleR += (aR[4] * e[4]); //this is now an average of inputSampleR bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL; inputSampleL *= e[0]; inputSampleL += (bL[1] * e[1]); inputSampleL += (bL[2] * e[2]); inputSampleL += (bL[3] * e[3]); inputSampleL += (bL[4] * e[4]); //this is now an average of an average of inputSampleL. Two poles bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR; inputSampleR *= e[0]; inputSampleR += (bR[1] * e[1]); inputSampleR += (bR[2] * e[2]); inputSampleR += (bR[3] * e[3]); inputSampleR += (bR[4] * e[4]); //this is now an average of an average of inputSampleR. Two poles inputSampleL *= unbox; inputSampleR *= unbox; //clip to 1.2533141373155 to reach maximum output if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); inputSampleL /= unbox; inputSampleR /= unbox; //now we have a distorted inputSample at the correct volume relative to drySample long double accumulatorSampleL = (drySampleL - inputSampleL); cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5]; cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1]; cL[1] = cL[0]; cL[0] = accumulatorSampleL; accumulatorSampleL *= f[0]; accumulatorSampleL += (cL[1] * f[1]); accumulatorSampleL += (cL[2] * f[2]); accumulatorSampleL += (cL[3] * f[3]); accumulatorSampleL += (cL[4] * f[4]); accumulatorSampleL += (cL[5] * f[5]); accumulatorSampleL += (cL[6] * f[6]); accumulatorSampleL += (cL[7] * f[7]); accumulatorSampleL += (cL[8] * f[8]); accumulatorSampleL += (cL[9] * f[9]); //this is now an average of all the recent variances from dry long double accumulatorSampleR = (drySampleR - inputSampleR); cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5]; cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1]; cR[1] = cR[0]; cR[0] = accumulatorSampleR; accumulatorSampleR *= f[0]; accumulatorSampleR += (cR[1] * f[1]); accumulatorSampleR += (cR[2] * f[2]); accumulatorSampleR += (cR[3] * f[3]); accumulatorSampleR += (cR[4] * f[4]); accumulatorSampleR += (cR[5] * f[5]); accumulatorSampleR += (cR[6] * f[6]); accumulatorSampleR += (cR[7] * f[7]); accumulatorSampleR += (cR[8] * f[8]); accumulatorSampleR += (cR[9] * f[9]); //this is now an average of all the recent variances from dry iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount); accumulatorSampleL -= iirSampleAL; //two poles of IIR iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount); accumulatorSampleR -= iirSampleAR; //two poles of IIR iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount); accumulatorSampleL -= iirSampleBL; //highpass section iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount); accumulatorSampleR -= iirSampleBR; //highpass section //this is now a highpassed average of all the recent variances from dry inputSampleL = drySampleL - accumulatorSampleL; inputSampleR = drySampleR - accumulatorSampleR; //we apply it as one operation, to get the result. if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;} //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }