/* ======================================== * Tremolo - Tremolo.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Tremolo_H #include "Tremolo.h" #endif void Tremolo::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); speedChase = pow(A,4); depthChase = B; double speedSpeed = 300 / (fabs( lastSpeed - speedChase)+1.0); double depthSpeed = 300 / (fabs( lastDepth - depthChase)+1.0); lastSpeed = speedChase; lastDepth = depthChase; double speed; double depth; double skew; double density; double tupi = 3.141592653589793238; double control; double tempcontrol; double thickness; double out; double bridgerectifier; double offset; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; speedAmount = (((speedAmount*speedSpeed)+speedChase)/(speedSpeed + 1.0)); depthAmount = (((depthAmount*depthSpeed)+depthChase)/(depthSpeed + 1.0)); speed = 0.0001+(speedAmount/1000.0); speed /= overallscale; depth = 1.0 - pow(1.0-depthAmount,5); skew = 1.0+pow(depthAmount,9); density = ((1.0-depthAmount)*2.0) - 1.0; offset = sin(sweep); sweep += speed; if (sweep > tupi){sweep -= tupi;} control = fabs(offset); if (density > 0) { tempcontrol = sin(control); control = (control * (1.0-density))+(tempcontrol * density); } else { tempcontrol = 1-cos(control); control = (control * (1.0+density))+(tempcontrol * -density); } //produce either boosted or starved version of control signal //will go from 0 to 1 thickness = ((control * 2.0) - 1.0)*skew; out = fabs(thickness); //do L bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleL *= (1.0 - control); inputSampleL *= 2.0; //apply tremolo, apply gain boost to compensate for volume loss inputSampleL = (drySampleL * (1-depth)) + (inputSampleL*depth); //end L //do R bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleR *= (1.0 - control); inputSampleR *= 2.0; //apply tremolo, apply gain boost to compensate for volume loss inputSampleR = (drySampleR * (1-depth)) + (inputSampleR*depth); //end R //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Tremolo::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); speedChase = pow(A,4); depthChase = B; double speedSpeed = 300 / (fabs( lastSpeed - speedChase)+1.0); double depthSpeed = 300 / (fabs( lastDepth - depthChase)+1.0); lastSpeed = speedChase; lastDepth = depthChase; double speed; double depth; double skew; double density; double tupi = 3.141592653589793238; double control; double tempcontrol; double thickness; double out; double bridgerectifier; double offset; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; speedAmount = (((speedAmount*speedSpeed)+speedChase)/(speedSpeed + 1.0)); depthAmount = (((depthAmount*depthSpeed)+depthChase)/(depthSpeed + 1.0)); speed = 0.0001+(speedAmount/1000.0); speed /= overallscale; depth = 1.0 - pow(1.0-depthAmount,5); skew = 1.0+pow(depthAmount,9); density = ((1.0-depthAmount)*2.0) - 1.0; offset = sin(sweep); sweep += speed; if (sweep > tupi){sweep -= tupi;} control = fabs(offset); if (density > 0) { tempcontrol = sin(control); control = (control * (1.0-density))+(tempcontrol * density); } else { tempcontrol = 1-cos(control); control = (control * (1.0+density))+(tempcontrol * -density); } //produce either boosted or starved version of control signal //will go from 0 to 1 thickness = ((control * 2.0) - 1.0)*skew; out = fabs(thickness); //do L bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleL *= (1.0 - control); inputSampleL *= 2.0; //apply tremolo, apply gain boost to compensate for volume loss inputSampleL = (drySampleL * (1-depth)) + (inputSampleL*depth); //end L //do R bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleR *= (1.0 - control); inputSampleR *= 2.0; //apply tremolo, apply gain boost to compensate for volume loss inputSampleR = (drySampleR * (1-depth)) + (inputSampleR*depth); //end R //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }