/* ======================================== * ToneSlant - ToneSlant.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __ToneSlant_H #include "ToneSlant.h" #endif void ToneSlant::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double inputSampleL; double inputSampleR; double correctionSampleL; double correctionSampleR; double accumulatorSampleL; double accumulatorSampleR; double drySampleL; double drySampleR; double overallscale = (A*99.0)+1.0; double applySlant = (B*2.0)-1.0; f[0] = 1.0 / overallscale; //count to f(gain) which will be 0. f(0) is x1 for (int count = 1; count < 102; count++) { if (count <= overallscale) { f[count] = (1.0 - (count / overallscale)) / overallscale; //recalc the filter and don't change the buffer it'll apply to } else { bL[count] = 0.0; //blank the unused buffer so when we return to it, no pops bR[count] = 0.0; //blank the unused buffer so when we return to it, no pops } } while (--sampleFrames >= 0) { for (int count = overallscale; count >= 0; count--) { bL[count+1] = bL[count]; bR[count+1] = bR[count]; } inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } bL[0] = accumulatorSampleL = drySampleL = inputSampleL; bR[0] = accumulatorSampleR = drySampleR = inputSampleR; accumulatorSampleL *= f[0]; accumulatorSampleR *= f[0]; for (int count = 1; count < overallscale; count++) { accumulatorSampleL += (bL[count] * f[count]); accumulatorSampleR += (bR[count] * f[count]); } correctionSampleL = inputSampleL - (accumulatorSampleL*2.0); correctionSampleR = inputSampleR - (accumulatorSampleR*2.0); //we're gonna apply the total effect of all these calculations as a single subtract inputSampleL += (correctionSampleL * applySlant); inputSampleR += (correctionSampleR * applySlant); //our one math operation on the input data coming in //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void ToneSlant::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double inputSampleL; double inputSampleR; double correctionSampleL; double correctionSampleR; double accumulatorSampleL; double accumulatorSampleR; double drySampleL; double drySampleR; double overallscale = (A*99.0)+1.0; double applySlant = (B*2.0)-1.0; f[0] = 1.0 / overallscale; //count to f(gain) which will be 0. f(0) is x1 for (int count = 1; count < 102; count++) { if (count <= overallscale) { f[count] = (1.0 - (count / overallscale)) / overallscale; //recalc the filter and don't change the buffer it'll apply to } else { bL[count] = 0.0; //blank the unused buffer so when we return to it, no pops bR[count] = 0.0; //blank the unused buffer so when we return to it, no pops } } while (--sampleFrames >= 0) { for (int count = overallscale; count >= 0; count--) { bL[count+1] = bL[count]; bR[count+1] = bR[count]; } inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } bL[0] = accumulatorSampleL = drySampleL = inputSampleL; bR[0] = accumulatorSampleR = drySampleR = inputSampleR; accumulatorSampleL *= f[0]; accumulatorSampleR *= f[0]; for (int count = 1; count < overallscale; count++) { accumulatorSampleL += (bL[count] * f[count]); accumulatorSampleR += (bR[count] * f[count]); } correctionSampleL = inputSampleL - (accumulatorSampleL*2.0); correctionSampleR = inputSampleR - (accumulatorSampleR*2.0); //we're gonna apply the total effect of all these calculations as a single subtract inputSampleL += (correctionSampleL * applySlant); inputSampleR += (correctionSampleR * applySlant); //our one math operation on the input data coming in //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }