/* ======================================== * StereoFX - StereoFX.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __StereoFX_H #include "StereoFX.h" #endif void StereoFX::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double inputSampleL; long double inputSampleR; long double mid; long double side; //High Impact section double stereowide = A; double centersquish = C; double density = stereowide * 2.4; double sustain = 1.0 - (1.0/(1.0 + (density/7.0))); //this way, enhance increases up to 50% and then mid falls off beyond that double bridgerectifier; double count; //Highpass section double iirAmount = pow(B,3)/overallscale; double tight = -0.33333333333333; double offset; //we are setting it up so that to either extreme we can get an audible sound, //but sort of scaled so small adjustments don't shift the cutoff frequency yet. while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } //assign working variables mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; //assign mid and side. Now, High Impact code count = density; while (count > 1.0) { bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (side > 0.0) side = bridgerectifier; else side = -bridgerectifier; count = count - 1.0; } //we have now accounted for any really high density settings. bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (side > 0) side = (side*(1-count))+(bridgerectifier*count); else side = (side*(1-count))-(bridgerectifier*count); //blend according to density control //done first density. Next, sustain-reducer bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = (1-cos(bridgerectifier))*3.141592653589793; if (side > 0) side = (side*(1-sustain))+(bridgerectifier*sustain); else side = (side*(1-sustain))-(bridgerectifier*sustain); //done with High Impact code //now, Highpass code offset = 0.666666666666666 + ((1-fabs(side))*tight); if (offset < 0) offset = 0; if (offset > 1) offset = 1; if (flip) { iirSampleA = (iirSampleA * (1 - (offset * iirAmount))) + (side * (offset * iirAmount)); side = side - iirSampleA; } else { iirSampleB = (iirSampleB * (1 - (offset * iirAmount))) + (side * (offset * iirAmount)); side = side - iirSampleB; } //done with Highpass code bridgerectifier = fabs(mid)/1.273239544735162; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier)*1.273239544735162; if (mid > 0) mid = (mid*(1-centersquish))+(bridgerectifier*centersquish); else mid = (mid*(1-centersquish))-(bridgerectifier*centersquish); //done with the mid saturating section. inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void StereoFX::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double inputSampleL; long double inputSampleR; long double mid; long double side; //High Impact section double stereowide = A; double centersquish = C; double density = stereowide * 2.4; double sustain = 1.0 - (1.0/(1.0 + (density/7.0))); //this way, enhance increases up to 50% and then mid falls off beyond that double bridgerectifier; double count; //Highpass section double iirAmount = pow(B,3)/overallscale; double tight = -0.33333333333333; double offset; //we are setting it up so that to either extreme we can get an audible sound, //but sort of scaled so small adjustments don't shift the cutoff frequency yet. while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } //assign working variables mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; //assign mid and side. Now, High Impact code count = density; while (count > 1.0) { bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (side > 0.0) side = bridgerectifier; else side = -bridgerectifier; count = count - 1.0; } //we have now accounted for any really high density settings. bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (side > 0) side = (side*(1-count))+(bridgerectifier*count); else side = (side*(1-count))-(bridgerectifier*count); //blend according to density control //done first density. Next, sustain-reducer bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = (1-cos(bridgerectifier))*3.141592653589793; if (side > 0) side = (side*(1-sustain))+(bridgerectifier*sustain); else side = (side*(1-sustain))-(bridgerectifier*sustain); //done with High Impact code //now, Highpass code offset = 0.666666666666666 + ((1-fabs(side))*tight); if (offset < 0) offset = 0; if (offset > 1) offset = 1; if (flip) { iirSampleA = (iirSampleA * (1 - (offset * iirAmount))) + (side * (offset * iirAmount)); side = side - iirSampleA; } else { iirSampleB = (iirSampleB * (1 - (offset * iirAmount))) + (side * (offset * iirAmount)); side = side - iirSampleB; } //done with Highpass code bridgerectifier = fabs(mid)/1.273239544735162; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier)*1.273239544735162; if (mid > 0) mid = (mid*(1-centersquish))+(bridgerectifier*centersquish); else mid = (mid*(1-centersquish))-(bridgerectifier*centersquish); //done with the mid saturating section. inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }