/* ======================================== * SingleEndedTriode - SingleEndedTriode.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __SingleEndedTriode_H #include "SingleEndedTriode.h" #endif void SingleEndedTriode::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double intensity = pow(A,2)*8.0; double triode = intensity; intensity +=0.001; double softcrossover = pow(B,3)/8.0; double hardcrossover = pow(C,7)/8.0; double wet = D; double dry = 1.0 - wet; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } double drySampleL = inputSampleL; double drySampleR = inputSampleR; if (triode > 0.0) { inputSampleL *= intensity; inputSampleR *= intensity; inputSampleL -= 0.5; inputSampleR -= 0.5; long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; inputSampleL += postsine; inputSampleR += postsine; inputSampleL /= intensity; inputSampleR /= intensity; } if (softcrossover > 0.0) { long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 0.0) bridgerectifier -= (softcrossover*(bridgerectifier+sqrt(bridgerectifier))); if (bridgerectifier < 0.0) bridgerectifier = 0; if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 0.0) bridgerectifier -= (softcrossover*(bridgerectifier+sqrt(bridgerectifier))); if (bridgerectifier < 0.0) bridgerectifier = 0; if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; } if (hardcrossover > 0.0) { long double bridgerectifier = fabs(inputSampleL); bridgerectifier -= hardcrossover; if (bridgerectifier < 0.0) bridgerectifier = 0.0; if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier -= hardcrossover; if (bridgerectifier < 0.0) bridgerectifier = 0.0; if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void SingleEndedTriode::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double intensity = pow(A,2)*8.0; double triode = intensity; intensity +=0.001; double softcrossover = pow(B,3)/8.0; double hardcrossover = pow(C,7)/8.0; double wet = D; double dry = 1.0 - wet; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } double drySampleL = inputSampleL; double drySampleR = inputSampleR; if (triode > 0.0) { inputSampleL *= intensity; inputSampleR *= intensity; inputSampleL -= 0.5; inputSampleR -= 0.5; long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; inputSampleL += postsine; inputSampleR += postsine; inputSampleL /= intensity; inputSampleR /= intensity; } if (softcrossover > 0.0) { long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 0.0) bridgerectifier -= (softcrossover*(bridgerectifier+sqrt(bridgerectifier))); if (bridgerectifier < 0.0) bridgerectifier = 0; if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 0.0) bridgerectifier -= (softcrossover*(bridgerectifier+sqrt(bridgerectifier))); if (bridgerectifier < 0.0) bridgerectifier = 0; if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; } if (hardcrossover > 0.0) { long double bridgerectifier = fabs(inputSampleL); bridgerectifier -= hardcrossover; if (bridgerectifier < 0.0) bridgerectifier = 0.0; if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier -= hardcrossover; if (bridgerectifier < 0.0) bridgerectifier = 0.0; if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }