/* ======================================== * PowerSag - PowerSag.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __PowerSag_H #include "PowerSag.h" #endif void PowerSag::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double intensity = pow(A,5)*80.0; double depthA = pow(B,2); int offsetA = (int)(depthA * 3900) + 1; double clamp; double thickness; double out; double bridgerectifier; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (gcount < 0 || gcount > 4000) {gcount = 4000;} //doing L dL[gcount+4000] = dL[gcount] = fabs(inputSampleL)*intensity; controlL += (dL[gcount] / offsetA); controlL -= (dL[gcount+offsetA] / offsetA); controlL -= 0.000001; clamp = 1; if (controlL < 0) {controlL = 0;} if (controlL > 1) {clamp -= (controlL - 1); controlL = 1;} if (clamp < 0.5) {clamp = 0.5;} thickness = ((1.0 - controlL) * 2.0) - 1.0; out = fabs(thickness); bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleL *= clamp; //end L //doing R dR[gcount+4000] = dR[gcount] = fabs(inputSampleR)*intensity; controlR += (dR[gcount] / offsetA); controlR -= (dR[gcount+offsetA] / offsetA); controlR -= 0.000001; clamp = 1; if (controlR < 0) {controlR = 0;} if (controlR > 1) {clamp -= (controlR - 1); controlR = 1;} if (clamp < 0.5) {clamp = 0.5;} thickness = ((1.0 - controlR) * 2.0) - 1.0; out = fabs(thickness); bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleR *= clamp; //end R gcount--; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void PowerSag::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double intensity = pow(A,5)*80.0; double depthA = pow(B,2); int offsetA = (int)(depthA * 3900) + 1; double clamp; double thickness; double out; double bridgerectifier; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (gcount < 0 || gcount > 4000) {gcount = 4000;} //doing L dL[gcount+4000] = dL[gcount] = fabs(inputSampleL)*intensity; controlL += (dL[gcount] / offsetA); controlL -= (dL[gcount+offsetA] / offsetA); controlL -= 0.000001; clamp = 1; if (controlL < 0) {controlL = 0;} if (controlL > 1) {clamp -= (controlL - 1); controlL = 1;} if (clamp < 0.5) {clamp = 0.5;} thickness = ((1.0 - controlL) * 2.0) - 1.0; out = fabs(thickness); bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleL *= clamp; //end L //doing R dR[gcount+4000] = dR[gcount] = fabs(inputSampleR)*intensity; controlR += (dR[gcount] / offsetA); controlR -= (dR[gcount+offsetA] / offsetA); controlR -= 0.000001; clamp = 1; if (controlR < 0) {controlR = 0;} if (controlR > 1) {clamp -= (controlR - 1); controlR = 1;} if (clamp < 0.5) {clamp = 0.5;} thickness = ((1.0 - controlR) * 2.0) - 1.0; out = fabs(thickness); bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (thickness > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out); //blend according to density control inputSampleR *= clamp; //end R gcount--; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }