/* ======================================== * Pop - Pop.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Pop_H #include "Pop.h" #endif void Pop::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double highGainOffset = pow(A,2)*0.023; double threshold = 1.001 - (1.0-pow(1.0-A,5)); double muMakeupGain = sqrt(1.0 / threshold); //gain settings around threshold double release = (A*100000.0) + 300000.0; int maxdelay = (int)(1450.0 * overallscale); if (maxdelay > 9999) maxdelay = 9999; release /= overallscale; double fastest = sqrt(release); //speed settings around release double output = B; double wet = C; // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aPop. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; dL[delay] = inputSampleL; dR[delay] = inputSampleR; delay--; if (delay < 0 || delay > maxdelay) {delay = maxdelay;} //yes this is a second bounds check. it's cheap, check EVERY time inputSampleL = (inputSampleL * thickenL) + (dL[delay] * (1.0-thickenL)); inputSampleR = (inputSampleR * thickenR) + (dR[delay] * (1.0-thickenR)); long double lowestSampleL = inputSampleL; if (fabs(inputSampleL) > fabs(previousL)) lowestSampleL = previousL; if (fabs(lowestSampleL) > fabs(previous2L)) lowestSampleL = (lowestSampleL + previous2L) / 1.99; if (fabs(lowestSampleL) > fabs(previous3L)) lowestSampleL = (lowestSampleL + previous3L) / 1.98; if (fabs(lowestSampleL) > fabs(previous4L)) lowestSampleL = (lowestSampleL + previous4L) / 1.97; if (fabs(lowestSampleL) > fabs(previous5L)) lowestSampleL = (lowestSampleL + previous5L) / 1.96; previous5L = previous4L; previous4L = previous3L; previous3L = previous2L; previous2L = previousL; previousL = inputSampleL; inputSampleL *= muMakeupGain; double punchinessL = 0.95-fabs(inputSampleL*0.08); if (punchinessL < 0.65) punchinessL = 0.65; long double lowestSampleR = inputSampleR; if (fabs(inputSampleR) > fabs(previousR)) lowestSampleR = previousR; if (fabs(lowestSampleR) > fabs(previous2R)) lowestSampleR = (lowestSampleR + previous2R) / 1.99; if (fabs(lowestSampleR) > fabs(previous3R)) lowestSampleR = (lowestSampleR + previous3R) / 1.98; if (fabs(lowestSampleR) > fabs(previous4R)) lowestSampleR = (lowestSampleR + previous4R) / 1.97; if (fabs(lowestSampleR) > fabs(previous5R)) lowestSampleR = (lowestSampleR + previous5R) / 1.96; previous5R = previous4R; previous4R = previous3R; previous3R = previous2R; previous2R = previousR; previousR = inputSampleR; inputSampleR *= muMakeupGain; double punchinessR = 0.95-fabs(inputSampleR*0.08); if (punchinessR < 0.65) punchinessR = 0.65; //adjust coefficients for L if (flip) { if (fabs(lowestSampleL) > threshold) { muVaryL = threshold / fabs(lowestSampleL); muAttackL = sqrt(fabs(muSpeedAL)); muCoefficientAL = muCoefficientAL * (muAttackL-1.0); if (muVaryL < threshold) { muCoefficientAL = muCoefficientAL + threshold; } else { muCoefficientAL = muCoefficientAL + muVaryL; } muCoefficientAL = muCoefficientAL / muAttackL; } else { muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0); muCoefficientAL = muCoefficientAL + 1.0; muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL); } muNewSpeedL = muSpeedAL * (muSpeedAL-1); muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest; muSpeedAL = muNewSpeedL / muSpeedAL; } else { if (fabs(lowestSampleL) > threshold) { muVaryL = threshold / fabs(lowestSampleL); muAttackL = sqrt(fabs(muSpeedBL)); muCoefficientBL = muCoefficientBL * (muAttackL-1); if (muVaryL < threshold) { muCoefficientBL = muCoefficientBL + threshold; } else { muCoefficientBL = muCoefficientBL + muVaryL; } muCoefficientBL = muCoefficientBL / muAttackL; } else { muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0); muCoefficientBL = muCoefficientBL + 1.0; muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL); } muNewSpeedL = muSpeedBL * (muSpeedBL-1); muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest; muSpeedBL = muNewSpeedL / muSpeedBL; } //got coefficients, adjusted speeds for L //adjust coefficients for R if (flip) { if (fabs(lowestSampleR) > threshold) { muVaryR = threshold / fabs(lowestSampleR); muAttackR = sqrt(fabs(muSpeedAR)); muCoefficientAR = muCoefficientAR * (muAttackR-1.0); if (muVaryR < threshold) { muCoefficientAR = muCoefficientAR + threshold; } else { muCoefficientAR = muCoefficientAR + muVaryR; } muCoefficientAR = muCoefficientAR / muAttackR; } else { muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0); muCoefficientAR = muCoefficientAR + 1.0; muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR); } muNewSpeedR = muSpeedAR * (muSpeedAR-1); muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest; muSpeedAR = muNewSpeedR / muSpeedAR; } else { if (fabs(lowestSampleR) > threshold) { muVaryR = threshold / fabs(lowestSampleR); muAttackR = sqrt(fabs(muSpeedBR)); muCoefficientBR = muCoefficientBR * (muAttackR-1); if (muVaryR < threshold) { muCoefficientBR = muCoefficientBR + threshold; } else { muCoefficientBR = muCoefficientBR + muVaryR; } muCoefficientBR = muCoefficientBR / muAttackR; } else { muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0); muCoefficientBR = muCoefficientBR + 1.0; muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR); } muNewSpeedR = muSpeedBR * (muSpeedBR-1); muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest; muSpeedBR = muNewSpeedR / muSpeedBR; } //got coefficients, adjusted speeds for R long double coefficientL = highGainOffset; if (flip) coefficientL += pow(muCoefficientAL,2); else coefficientL += pow(muCoefficientBL,2); inputSampleL *= coefficientL; thickenL = (coefficientL/5)+punchinessL;//0.80; thickenL = (1.0-wet)+(wet*thickenL); long double coefficientR = highGainOffset; if (flip) coefficientR += pow(muCoefficientAR,2); else coefficientR += pow(muCoefficientBR,2); inputSampleR *= coefficientR; thickenR = (coefficientR/5)+punchinessR;//0.80; thickenR = (1.0-wet)+(wet*thickenR); //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155; bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier)); //using Spiral instead of Density algorithm if (inputSampleL > 0) inputSampleL = (inputSampleL*coefficientL)+(bridgerectifier*(1-coefficientL)); else inputSampleL = (inputSampleL*coefficientL)-(bridgerectifier*(1-coefficientL)); //second stage of overdrive to prevent overs and allow bloody loud extremeness bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155; bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier)); //using Spiral instead of Density algorithm if (inputSampleR > 0) inputSampleR = (inputSampleR*coefficientR)+(bridgerectifier*(1-coefficientR)); else inputSampleR = (inputSampleR*coefficientR)-(bridgerectifier*(1-coefficientR)); //second stage of overdrive to prevent overs and allow bloody loud extremeness flip = !flip; if (output < 1.0) {inputSampleL *= output;inputSampleR *= output;} if (wet<1.0) { inputSampleL = (drySampleL*(1.0-wet))+(inputSampleL*wet); inputSampleR = (drySampleR*(1.0-wet))+(inputSampleR*wet); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Pop::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double highGainOffset = pow(A,2)*0.023; double threshold = 1.001 - (1.0-pow(1.0-A,5)); double muMakeupGain = sqrt(1.0 / threshold); //gain settings around threshold double release = (A*100000.0) + 300000.0; int maxdelay = (int)(1450.0 * overallscale); if (maxdelay > 9999) maxdelay = 9999; release /= overallscale; double fastest = sqrt(release); //speed settings around release double output = B; double wet = C; // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aPop. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; dL[delay] = inputSampleL; dR[delay] = inputSampleR; delay--; if (delay < 0 || delay > maxdelay) {delay = maxdelay;} //yes this is a second bounds check. it's cheap, check EVERY time inputSampleL = (inputSampleL * thickenL) + (dL[delay] * (1.0-thickenL)); inputSampleR = (inputSampleR * thickenR) + (dR[delay] * (1.0-thickenR)); long double lowestSampleL = inputSampleL; if (fabs(inputSampleL) > fabs(previousL)) lowestSampleL = previousL; if (fabs(lowestSampleL) > fabs(previous2L)) lowestSampleL = (lowestSampleL + previous2L) / 1.99; if (fabs(lowestSampleL) > fabs(previous3L)) lowestSampleL = (lowestSampleL + previous3L) / 1.98; if (fabs(lowestSampleL) > fabs(previous4L)) lowestSampleL = (lowestSampleL + previous4L) / 1.97; if (fabs(lowestSampleL) > fabs(previous5L)) lowestSampleL = (lowestSampleL + previous5L) / 1.96; previous5L = previous4L; previous4L = previous3L; previous3L = previous2L; previous2L = previousL; previousL = inputSampleL; inputSampleL *= muMakeupGain; double punchinessL = 0.95-fabs(inputSampleL*0.08); if (punchinessL < 0.65) punchinessL = 0.65; long double lowestSampleR = inputSampleR; if (fabs(inputSampleR) > fabs(previousR)) lowestSampleR = previousR; if (fabs(lowestSampleR) > fabs(previous2R)) lowestSampleR = (lowestSampleR + previous2R) / 1.99; if (fabs(lowestSampleR) > fabs(previous3R)) lowestSampleR = (lowestSampleR + previous3R) / 1.98; if (fabs(lowestSampleR) > fabs(previous4R)) lowestSampleR = (lowestSampleR + previous4R) / 1.97; if (fabs(lowestSampleR) > fabs(previous5R)) lowestSampleR = (lowestSampleR + previous5R) / 1.96; previous5R = previous4R; previous4R = previous3R; previous3R = previous2R; previous2R = previousR; previousR = inputSampleR; inputSampleR *= muMakeupGain; double punchinessR = 0.95-fabs(inputSampleR*0.08); if (punchinessR < 0.65) punchinessR = 0.65; //adjust coefficients for L if (flip) { if (fabs(lowestSampleL) > threshold) { muVaryL = threshold / fabs(lowestSampleL); muAttackL = sqrt(fabs(muSpeedAL)); muCoefficientAL = muCoefficientAL * (muAttackL-1.0); if (muVaryL < threshold) { muCoefficientAL = muCoefficientAL + threshold; } else { muCoefficientAL = muCoefficientAL + muVaryL; } muCoefficientAL = muCoefficientAL / muAttackL; } else { muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0); muCoefficientAL = muCoefficientAL + 1.0; muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL); } muNewSpeedL = muSpeedAL * (muSpeedAL-1); muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest; muSpeedAL = muNewSpeedL / muSpeedAL; } else { if (fabs(lowestSampleL) > threshold) { muVaryL = threshold / fabs(lowestSampleL); muAttackL = sqrt(fabs(muSpeedBL)); muCoefficientBL = muCoefficientBL * (muAttackL-1); if (muVaryL < threshold) { muCoefficientBL = muCoefficientBL + threshold; } else { muCoefficientBL = muCoefficientBL + muVaryL; } muCoefficientBL = muCoefficientBL / muAttackL; } else { muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0); muCoefficientBL = muCoefficientBL + 1.0; muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL); } muNewSpeedL = muSpeedBL * (muSpeedBL-1); muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest; muSpeedBL = muNewSpeedL / muSpeedBL; } //got coefficients, adjusted speeds for L //adjust coefficients for R if (flip) { if (fabs(lowestSampleR) > threshold) { muVaryR = threshold / fabs(lowestSampleR); muAttackR = sqrt(fabs(muSpeedAR)); muCoefficientAR = muCoefficientAR * (muAttackR-1.0); if (muVaryR < threshold) { muCoefficientAR = muCoefficientAR + threshold; } else { muCoefficientAR = muCoefficientAR + muVaryR; } muCoefficientAR = muCoefficientAR / muAttackR; } else { muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0); muCoefficientAR = muCoefficientAR + 1.0; muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR); } muNewSpeedR = muSpeedAR * (muSpeedAR-1); muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest; muSpeedAR = muNewSpeedR / muSpeedAR; } else { if (fabs(lowestSampleR) > threshold) { muVaryR = threshold / fabs(lowestSampleR); muAttackR = sqrt(fabs(muSpeedBR)); muCoefficientBR = muCoefficientBR * (muAttackR-1); if (muVaryR < threshold) { muCoefficientBR = muCoefficientBR + threshold; } else { muCoefficientBR = muCoefficientBR + muVaryR; } muCoefficientBR = muCoefficientBR / muAttackR; } else { muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0); muCoefficientBR = muCoefficientBR + 1.0; muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR); } muNewSpeedR = muSpeedBR * (muSpeedBR-1); muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest; muSpeedBR = muNewSpeedR / muSpeedBR; } //got coefficients, adjusted speeds for R long double coefficientL = highGainOffset; if (flip) coefficientL += pow(muCoefficientAL,2); else coefficientL += pow(muCoefficientBL,2); inputSampleL *= coefficientL; thickenL = (coefficientL/5)+punchinessL;//0.80; thickenL = (1.0-wet)+(wet*thickenL); long double coefficientR = highGainOffset; if (flip) coefficientR += pow(muCoefficientAR,2); else coefficientR += pow(muCoefficientBR,2); inputSampleR *= coefficientR; thickenR = (coefficientR/5)+punchinessR;//0.80; thickenR = (1.0-wet)+(wet*thickenR); //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it long double bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155; bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier)); //using Spiral instead of Density algorithm if (inputSampleL > 0) inputSampleL = (inputSampleL*coefficientL)+(bridgerectifier*(1-coefficientL)); else inputSampleL = (inputSampleL*coefficientL)-(bridgerectifier*(1-coefficientL)); //second stage of overdrive to prevent overs and allow bloody loud extremeness bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155; bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier)); //using Spiral instead of Density algorithm if (inputSampleR > 0) inputSampleR = (inputSampleR*coefficientR)+(bridgerectifier*(1-coefficientR)); else inputSampleR = (inputSampleR*coefficientR)-(bridgerectifier*(1-coefficientR)); //second stage of overdrive to prevent overs and allow bloody loud extremeness flip = !flip; if (output < 1.0) {inputSampleL *= output;inputSampleR *= output;} if (wet<1.0) { inputSampleL = (drySampleL*(1.0-wet))+(inputSampleL*wet); inputSampleR = (drySampleR*(1.0-wet))+(inputSampleR*wet); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }