/* ======================================== * PhaseNudge - PhaseNudge.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __PhaseNudge_H #include "PhaseNudge.h" #endif void PhaseNudge::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; int allpasstemp; double outallpass = 0.618033988749894848204586; //golden ratio! //if you see 0.6180 it's not a wild stretch to wonder whether you are working with a constant int maxdelayTarget = (int)(pow(A,3)*1501.0); double wet = B; double dry = 1.0 - wet; double bridgerectifier; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL /= 4.0; inputSampleR /= 4.0; bridgerectifier = fabs(inputSampleL); bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; if (fabs(maxdelay - maxdelayTarget) > 1500) maxdelay = maxdelayTarget; if (maxdelay < maxdelayTarget) { maxdelay++; dL[maxdelay] = (dL[0]+dL[maxdelay-1]) / 2.0; dR[maxdelay] = (dR[0]+dR[maxdelay-1]) / 2.0; } if (maxdelay > maxdelayTarget) { maxdelay--; dL[maxdelay] = (dL[0]+dL[maxdelay]) / 2.0; dR[maxdelay] = (dR[0]+dR[maxdelay]) / 2.0; } allpasstemp = one - 1; if (allpasstemp < 0 || allpasstemp > maxdelay) allpasstemp = maxdelay; inputSampleL -= dL[allpasstemp]*outallpass; inputSampleR -= dR[allpasstemp]*outallpass; dL[one] = inputSampleL; dR[one] = inputSampleR; inputSampleL *= outallpass; inputSampleR *= outallpass; one--; if (one < 0 || one > maxdelay) {one = maxdelay;} inputSampleL += (dL[one]); inputSampleR += (dR[one]); bridgerectifier = fabs(inputSampleL); bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleL > 0) inputSampleL -= bridgerectifier; else inputSampleL += bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleR > 0) inputSampleR -= bridgerectifier; else inputSampleR += bridgerectifier; inputSampleL *= 4.0; inputSampleR *= 4.0; if (wet < 1.0) { inputSampleL = (drySampleL * dry)+(inputSampleL * wet); inputSampleR = (drySampleR * dry)+(inputSampleR * wet); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void PhaseNudge::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; int allpasstemp; double outallpass = 0.618033988749894848204586; //golden ratio! //if you see 0.6180 it's not a wild stretch to wonder whether you are working with a constant int maxdelayTarget = (int)(pow(A,3)*1501.0); double wet = B; double dry = 1.0 - wet; double bridgerectifier; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL /= 4.0; inputSampleR /= 4.0; bridgerectifier = fabs(inputSampleL); bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; if (fabs(maxdelay - maxdelayTarget) > 1500) maxdelay = maxdelayTarget; if (maxdelay < maxdelayTarget) { maxdelay++; dL[maxdelay] = (dL[0]+dL[maxdelay-1]) / 2.0; dR[maxdelay] = (dR[0]+dR[maxdelay-1]) / 2.0; } if (maxdelay > maxdelayTarget) { maxdelay--; dL[maxdelay] = (dL[0]+dL[maxdelay]) / 2.0; dR[maxdelay] = (dR[0]+dR[maxdelay]) / 2.0; } allpasstemp = one - 1; if (allpasstemp < 0 || allpasstemp > maxdelay) allpasstemp = maxdelay; inputSampleL -= dL[allpasstemp]*outallpass; inputSampleR -= dR[allpasstemp]*outallpass; dL[one] = inputSampleL; dR[one] = inputSampleR; inputSampleL *= outallpass; inputSampleR *= outallpass; one--; if (one < 0 || one > maxdelay) {one = maxdelay;} inputSampleL += (dL[one]); inputSampleR += (dR[one]); bridgerectifier = fabs(inputSampleL); bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleL > 0) inputSampleL -= bridgerectifier; else inputSampleL += bridgerectifier; bridgerectifier = fabs(inputSampleR); bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleR > 0) inputSampleR -= bridgerectifier; else inputSampleR += bridgerectifier; inputSampleL *= 4.0; inputSampleR *= 4.0; if (wet < 1.0) { inputSampleL = (drySampleL * dry)+(inputSampleL * wet); inputSampleR = (drySampleR * dry)+(inputSampleR * wet); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }