/* ======================================== * PDChannel - PDChannel.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __PDChannel_H #include "PDChannel.h" #endif void PDChannel::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double inputgain = A; double intensity = B; double applyL; double applyR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; if (settingchase != inputgain) { chasespeed *= 2.0; settingchase = inputgain; } if (chasespeed > 2500.0) chasespeed = 2500.0; if (gainchase < 0.0) gainchase = inputgain; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } chasespeed *= 0.9999; chasespeed -= 0.01; if (chasespeed < 350.0) chasespeed = 350.0; //we have our chase speed compensated for recent fader activity gainchase = (((gainchase*chasespeed)+inputgain)/(chasespeed+1.0)); //gainchase is chasing the target, as a simple multiply gain factor if (1.0 != gainchase) { inputSampleL *= gainchase; inputSampleR *= gainchase; } //done with trim control inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //amplitude aspect drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //basic distortion factor applyL = (fabs(previousSampleL + inputSampleL) / 2.0) * intensity; applyR = (fabs(previousSampleR + inputSampleR) / 2.0) * intensity; //saturate less if previous sample was undistorted and low level, or if it was //inverse polarity. Lets through highs and brightness more. inputSampleL = (drySampleL * (1.0 - applyL)) + (inputSampleL * applyL); inputSampleR = (drySampleR * (1.0 - applyR)) + (inputSampleR * applyR); //dry-wet control for intensity also has FM modulation to clean up highs previousSampleL = sin(drySampleL); previousSampleR = sin(drySampleR); //apply the sine while storing previous sample //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void PDChannel::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double inputgain = A; double intensity = B; double applyL; double applyR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; if (settingchase != inputgain) { chasespeed *= 2.0; settingchase = inputgain; } if (chasespeed > 2500.0) chasespeed = 2500.0; if (gainchase < 0.0) gainchase = inputgain; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } chasespeed *= 0.9999; chasespeed -= 0.01; if (chasespeed < 350.0) chasespeed = 350.0; //we have our chase speed compensated for recent fader activity gainchase = (((gainchase*chasespeed)+inputgain)/(chasespeed+1.0)); //gainchase is chasing the target, as a simple multiply gain factor if (1.0 != gainchase) { inputSampleL *= gainchase; inputSampleR *= gainchase; } //done with trim control inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //amplitude aspect drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //basic distortion factor applyL = (fabs(previousSampleL + inputSampleL) / 2.0) * intensity; applyR = (fabs(previousSampleR + inputSampleR) / 2.0) * intensity; //saturate less if previous sample was undistorted and low level, or if it was //inverse polarity. Lets through highs and brightness more. inputSampleL = (drySampleL * (1.0 - applyL)) + (inputSampleL * applyL); inputSampleR = (drySampleR * (1.0 - applyR)) + (inputSampleR * applyR); //dry-wet control for intensity also has FM modulation to clean up highs previousSampleL = sin(drySampleL); previousSampleR = sin(drySampleR); //apply the sine while storing previous sample //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }