/* ======================================== * OneCornerClip - OneCornerClip.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __OneCornerClip_H #include "OneCornerClip.h" #endif void OneCornerClip::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputGain = pow(10.0,(((A*36.0)-12.0)/20.0)); double posThreshold = B; double posTargetL = posThreshold; double posTargetR = posThreshold; double negThreshold = -C; double negTargetL = negThreshold; double negTargetR = negThreshold; double voicing = D; if (voicing == 0.618) voicing = 0.618033988749894848204586; //special case: we will do a perfect golden ratio as the default 0.618 //just 'cos magic universality sauce (seriously, it seems a sweetspot) if (overallscale > 0.0) voicing /= overallscale; //translate to desired sample rate, 44.1K is the base if (voicing < 0.0) voicing = 0.0; if (voicing > 1.0) voicing = 1.0; //some insanity checking double inverseHardness = 1.0 - voicing; bool clipEngage = false; double wet = E; double dry = 1.0 - wet; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (inputGain != 1.0) { inputSampleL *= inputGain; inputSampleR *= inputGain; clipEngage = true; //if we are altering gain we will always process } else { clipEngage = false; //if we are not touching gain, we will bypass unless //a clip is actively being softened. } if (inputSampleL > posTargetL) { inputSampleL = (lastSampleL * voicing) + (posThreshold * inverseHardness); posTargetL = inputSampleL; clipEngage = true; } else { posTargetL = posThreshold; } if (inputSampleR > posTargetR) { inputSampleR = (lastSampleR * voicing) + (posThreshold * inverseHardness); posTargetR = inputSampleR; clipEngage = true; } else { posTargetR = posThreshold; } if (inputSampleL < negTargetL) { inputSampleL = (lastSampleL * voicing) + (negThreshold * inverseHardness); negTargetL = inputSampleL; clipEngage = true; } else { negTargetL = negThreshold; } if (inputSampleR < negTargetR) { inputSampleR = (lastSampleR * voicing) + (negThreshold * inverseHardness); negTargetR = inputSampleR; clipEngage = true; } else { negTargetR = negThreshold; } lastSampleL = inputSampleL; lastSampleR = inputSampleR; if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither if (clipEngage == false) { inputSampleL = *in1; inputSampleR = *in2; } //fall back to raw passthrough if at all possible *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void OneCornerClip::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputGain = pow(10.0,(((A*36.0)-12.0)/20.0)); double posThreshold = B; double posTargetL = posThreshold; double posTargetR = posThreshold; double negThreshold = -C; double negTargetL = negThreshold; double negTargetR = negThreshold; double voicing = D; if (voicing == 0.618) voicing = 0.618033988749894848204586; //special case: we will do a perfect golden ratio as the default 0.618 //just 'cos magic universality sauce (seriously, it seems a sweetspot) if (overallscale > 0.0) voicing /= overallscale; //translate to desired sample rate, 44.1K is the base if (voicing < 0.0) voicing = 0.0; if (voicing > 1.0) voicing = 1.0; //some insanity checking double inverseHardness = 1.0 - voicing; bool clipEngage = false; double wet = E; double dry = 1.0 - wet; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (inputGain != 1.0) { inputSampleL *= inputGain; inputSampleR *= inputGain; clipEngage = true; //if we are altering gain we will always process } else { clipEngage = false; //if we are not touching gain, we will bypass unless //a clip is actively being softened. } if (inputSampleL > posTargetL) { inputSampleL = (lastSampleL * voicing) + (posThreshold * inverseHardness); posTargetL = inputSampleL; clipEngage = true; } else { posTargetL = posThreshold; } if (inputSampleR > posTargetR) { inputSampleR = (lastSampleR * voicing) + (posThreshold * inverseHardness); posTargetR = inputSampleR; clipEngage = true; } else { posTargetR = posThreshold; } if (inputSampleL < negTargetL) { inputSampleL = (lastSampleL * voicing) + (negThreshold * inverseHardness); negTargetL = inputSampleL; clipEngage = true; } else { negTargetL = negThreshold; } if (inputSampleR < negTargetR) { inputSampleR = (lastSampleR * voicing) + (negThreshold * inverseHardness); negTargetR = inputSampleR; clipEngage = true; } else { negTargetR = negThreshold; } lastSampleL = inputSampleL; lastSampleR = inputSampleR; if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither if (clipEngage == false) { inputSampleL = *in1; inputSampleR = *in2; } //fall back to raw passthrough if at all possible *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }