/* ======================================== * Noise - Noise.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Noise_H #include "Noise.h" #endif void Noise::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double cutoffL; double cutoffR; double cutofftarget = (A*3.5); double rumblecutoff = cutofftarget * 0.005; double invcutoffL; double invcutoffR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; double highpass = C*38.0; int lowcut = floor(highpass); int dcut; if (lowcut > 37) {dcut= 1151;} if (lowcut == 37) {dcut= 1091;} if (lowcut == 36) {dcut= 1087;} if (lowcut == 35) {dcut= 1031;} if (lowcut == 34) {dcut= 1013;} if (lowcut == 33) {dcut= 971;} if (lowcut == 32) {dcut= 907;} if (lowcut == 31) {dcut= 839;} if (lowcut == 30) {dcut= 797;} if (lowcut == 29) {dcut= 733;} if (lowcut == 28) {dcut= 719;} if (lowcut == 27) {dcut= 673;} if (lowcut == 26) {dcut= 613;} if (lowcut == 25) {dcut= 593;} if (lowcut == 24) {dcut= 541;} if (lowcut == 23) {dcut= 479;} if (lowcut == 22) {dcut= 431;} if (lowcut == 21) {dcut= 419;} if (lowcut == 20) {dcut= 373;} if (lowcut == 19) {dcut= 311;} if (lowcut == 18) {dcut= 293;} if (lowcut == 17) {dcut= 233;} if (lowcut == 16) {dcut= 191;} if (lowcut == 15) {dcut= 173;} if (lowcut == 14) {dcut= 131;} if (lowcut == 13) {dcut= 113;} if (lowcut == 12) {dcut= 71;} if (lowcut == 11) {dcut= 53;} if (lowcut == 10) {dcut= 31;} if (lowcut == 9) {dcut= 27;} if (lowcut == 8) {dcut= 23;} if (lowcut == 7) {dcut= 19;} if (lowcut == 6) {dcut= 17;} if (lowcut == 5) {dcut= 13;} if (lowcut == 4) {dcut= 11;} if (lowcut == 3) {dcut= 7;} if (lowcut == 2) {dcut= 5;} if (lowcut < 2) {dcut= 3;} highpass = B * 22.0; lowcut = floor(highpass)+1; double decay = 0.001 - ((1.0-pow(1.0-D,3))*0.001); if (decay == 0.001) decay = 0.1; double wet = F; double dry = 1.0 - wet; wet *= 0.01; //correct large gain issue double correctionSample; double accumulatorSampleL; double accumulatorSampleR; double overallscale = (E*9.0)+1.0; double gain = overallscale; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; //and now it's neatly scaled, too while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (surgeL 1.0) surgeL = 1.0; } else { surgeL -= ((rand()/(double)RAND_MAX)*(surgeL-fabs(inputSampleL))*decay); if (surgeL < 0.0) surgeL = 0.0; } cutoffL = pow((cutofftarget*surgeL),5); if (cutoffL > 1.0) cutoffL = 1.0; invcutoffL = 1.0 - cutoffL; //set up modified cutoff L if (surgeR 1.0) surgeR = 1.0; } else { surgeR -= ((rand()/(double)RAND_MAX)*(surgeR-fabs(inputSampleR))*decay); if (surgeR < 0.0) surgeR = 0.0; } cutoffR = pow((cutofftarget*surgeR),5); if (cutoffR > 1.0) cutoffR = 1.0; invcutoffR = 1.0 - cutoffR; //set up modified cutoff R flipL = !flipL; flipR = !flipR; filterflip = !filterflip; quadratic -= 1; if (quadratic < 0) { position += 1; quadratic = position * position; quadratic = quadratic % 170003; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 17011; //% is C++ mod operator quadratic *= quadratic; //quadratic = quadratic % 1709; //% is C++ mod operator //quadratic *= quadratic; quadratic = quadratic % dcut; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % lowcut; //sets density of the centering force if (noiseAL < 0) {flipL = true;} else {flipL = false;} if (noiseAR < 0) {flipR = true;} else {flipR = false;} } if (flipL) noiseAL += (rand()/(double)RAND_MAX); else noiseAL -= (rand()/(double)RAND_MAX); if (flipR) noiseAR += (rand()/(double)RAND_MAX); else noiseAR -= (rand()/(double)RAND_MAX); if (filterflip) { noiseBL *= invcutoffL; noiseBL += (noiseAL*cutoffL); inputSampleL = noiseBL+noiseCL; rumbleAL *= (1.0-rumblecutoff); rumbleAL += (inputSampleL*rumblecutoff); noiseBR *= invcutoffR; noiseBR += (noiseAR*cutoffR); inputSampleR = noiseBR+noiseCR; rumbleAR *= (1.0-rumblecutoff); rumbleAR += (inputSampleR*rumblecutoff); } else { noiseCL *= invcutoffL; noiseCL += (noiseAL*cutoffL); inputSampleL = noiseBL+noiseCL; rumbleBL *= (1.0-rumblecutoff); rumbleBL += (inputSampleL*rumblecutoff); noiseCR *= invcutoffR; noiseCR += (noiseAR*cutoffR); inputSampleR = noiseBR+noiseCR; rumbleBR *= (1.0-rumblecutoff); rumbleBR += (inputSampleR*rumblecutoff); } inputSampleL -= (rumbleAL+rumbleBL); inputSampleL *= (1.0-rumblecutoff); inputSampleR -= (rumbleAR+rumbleBR); inputSampleR *= (1.0-rumblecutoff); inputSampleL *= wet; inputSampleL += (drySampleL * dry); inputSampleR *= wet; inputSampleR += (drySampleR * dry); //apply the dry to the noise bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = accumulatorSampleL = inputSampleL; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = accumulatorSampleR = inputSampleR; accumulatorSampleL *= f[0]; accumulatorSampleL += (bL[1] * f[1]); accumulatorSampleL += (bL[2] * f[2]); accumulatorSampleL += (bL[3] * f[3]); accumulatorSampleL += (bL[4] * f[4]); accumulatorSampleL += (bL[5] * f[5]); accumulatorSampleL += (bL[6] * f[6]); accumulatorSampleL += (bL[7] * f[7]); accumulatorSampleL += (bL[8] * f[8]); accumulatorSampleL += (bL[9] * f[9]); //we are doing our repetitive calculations on a separate value accumulatorSampleR *= f[0]; accumulatorSampleR += (bR[1] * f[1]); accumulatorSampleR += (bR[2] * f[2]); accumulatorSampleR += (bR[3] * f[3]); accumulatorSampleR += (bR[4] * f[4]); accumulatorSampleR += (bR[5] * f[5]); accumulatorSampleR += (bR[6] * f[6]); accumulatorSampleR += (bR[7] * f[7]); accumulatorSampleR += (bR[8] * f[8]); accumulatorSampleR += (bR[9] * f[9]); //we are doing our repetitive calculations on a separate value correctionSample = inputSampleL - accumulatorSampleL; //we're gonna apply the total effect of all these calculations as a single subtract //(formerly a more complicated algorithm) inputSampleL -= correctionSample; //applying the distance calculation to both the dry AND the noise output to blend them correctionSample = inputSampleR - accumulatorSampleR; //we're gonna apply the total effect of all these calculations as a single subtract //(formerly a more complicated algorithm) inputSampleR -= correctionSample; //applying the distance calculation to both the dry AND the noise output to blend them //sometimes I'm really tired and can't do stuff, and I remember trying to simplify this //and breaking it somehow. So, there ya go, strange obtuse code. //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Noise::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double cutoffL; double cutoffR; double cutofftarget = (A*3.5); double rumblecutoff = cutofftarget * 0.005; double invcutoffL; double invcutoffR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; double highpass = C*38.0; int lowcut = floor(highpass); int dcut; if (lowcut > 37) {dcut= 1151;} if (lowcut == 37) {dcut= 1091;} if (lowcut == 36) {dcut= 1087;} if (lowcut == 35) {dcut= 1031;} if (lowcut == 34) {dcut= 1013;} if (lowcut == 33) {dcut= 971;} if (lowcut == 32) {dcut= 907;} if (lowcut == 31) {dcut= 839;} if (lowcut == 30) {dcut= 797;} if (lowcut == 29) {dcut= 733;} if (lowcut == 28) {dcut= 719;} if (lowcut == 27) {dcut= 673;} if (lowcut == 26) {dcut= 613;} if (lowcut == 25) {dcut= 593;} if (lowcut == 24) {dcut= 541;} if (lowcut == 23) {dcut= 479;} if (lowcut == 22) {dcut= 431;} if (lowcut == 21) {dcut= 419;} if (lowcut == 20) {dcut= 373;} if (lowcut == 19) {dcut= 311;} if (lowcut == 18) {dcut= 293;} if (lowcut == 17) {dcut= 233;} if (lowcut == 16) {dcut= 191;} if (lowcut == 15) {dcut= 173;} if (lowcut == 14) {dcut= 131;} if (lowcut == 13) {dcut= 113;} if (lowcut == 12) {dcut= 71;} if (lowcut == 11) {dcut= 53;} if (lowcut == 10) {dcut= 31;} if (lowcut == 9) {dcut= 27;} if (lowcut == 8) {dcut= 23;} if (lowcut == 7) {dcut= 19;} if (lowcut == 6) {dcut= 17;} if (lowcut == 5) {dcut= 13;} if (lowcut == 4) {dcut= 11;} if (lowcut == 3) {dcut= 7;} if (lowcut == 2) {dcut= 5;} if (lowcut < 2) {dcut= 3;} highpass = B * 22.0; lowcut = floor(highpass)+1; double decay = 0.001 - ((1.0-pow(1.0-D,3))*0.001); if (decay == 0.001) decay = 0.1; double wet = F; double dry = 1.0 - wet; wet *= 0.01; //correct large gain issue double correctionSample; double accumulatorSampleL; double accumulatorSampleR; double overallscale = (E*9.0)+1.0; double gain = overallscale; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; //and now it's neatly scaled, too while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (surgeL 1.0) surgeL = 1.0; } else { surgeL -= ((rand()/(double)RAND_MAX)*(surgeL-fabs(inputSampleL))*decay); if (surgeL < 0.0) surgeL = 0.0; } cutoffL = pow((cutofftarget*surgeL),5); if (cutoffL > 1.0) cutoffL = 1.0; invcutoffL = 1.0 - cutoffL; //set up modified cutoff L if (surgeR 1.0) surgeR = 1.0; } else { surgeR -= ((rand()/(double)RAND_MAX)*(surgeR-fabs(inputSampleR))*decay); if (surgeR < 0.0) surgeR = 0.0; } cutoffR = pow((cutofftarget*surgeR),5); if (cutoffR > 1.0) cutoffR = 1.0; invcutoffR = 1.0 - cutoffR; //set up modified cutoff R flipL = !flipL; flipR = !flipR; filterflip = !filterflip; quadratic -= 1; if (quadratic < 0) { position += 1; quadratic = position * position; quadratic = quadratic % 170003; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 17011; //% is C++ mod operator quadratic *= quadratic; //quadratic = quadratic % 1709; //% is C++ mod operator //quadratic *= quadratic; quadratic = quadratic % dcut; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % lowcut; //sets density of the centering force if (noiseAL < 0) {flipL = true;} else {flipL = false;} if (noiseAR < 0) {flipR = true;} else {flipR = false;} } if (flipL) noiseAL += (rand()/(double)RAND_MAX); else noiseAL -= (rand()/(double)RAND_MAX); if (flipR) noiseAR += (rand()/(double)RAND_MAX); else noiseAR -= (rand()/(double)RAND_MAX); if (filterflip) { noiseBL *= invcutoffL; noiseBL += (noiseAL*cutoffL); inputSampleL = noiseBL+noiseCL; rumbleAL *= (1.0-rumblecutoff); rumbleAL += (inputSampleL*rumblecutoff); noiseBR *= invcutoffR; noiseBR += (noiseAR*cutoffR); inputSampleR = noiseBR+noiseCR; rumbleAR *= (1.0-rumblecutoff); rumbleAR += (inputSampleR*rumblecutoff); } else { noiseCL *= invcutoffL; noiseCL += (noiseAL*cutoffL); inputSampleL = noiseBL+noiseCL; rumbleBL *= (1.0-rumblecutoff); rumbleBL += (inputSampleL*rumblecutoff); noiseCR *= invcutoffR; noiseCR += (noiseAR*cutoffR); inputSampleR = noiseBR+noiseCR; rumbleBR *= (1.0-rumblecutoff); rumbleBR += (inputSampleR*rumblecutoff); } inputSampleL -= (rumbleAL+rumbleBL); inputSampleL *= (1.0-rumblecutoff); inputSampleR -= (rumbleAR+rumbleBR); inputSampleR *= (1.0-rumblecutoff); inputSampleL *= wet; inputSampleL += (drySampleL * dry); inputSampleR *= wet; inputSampleR += (drySampleR * dry); //apply the dry to the noise bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = accumulatorSampleL = inputSampleL; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = accumulatorSampleR = inputSampleR; accumulatorSampleL *= f[0]; accumulatorSampleL += (bL[1] * f[1]); accumulatorSampleL += (bL[2] * f[2]); accumulatorSampleL += (bL[3] * f[3]); accumulatorSampleL += (bL[4] * f[4]); accumulatorSampleL += (bL[5] * f[5]); accumulatorSampleL += (bL[6] * f[6]); accumulatorSampleL += (bL[7] * f[7]); accumulatorSampleL += (bL[8] * f[8]); accumulatorSampleL += (bL[9] * f[9]); //we are doing our repetitive calculations on a separate value accumulatorSampleR *= f[0]; accumulatorSampleR += (bR[1] * f[1]); accumulatorSampleR += (bR[2] * f[2]); accumulatorSampleR += (bR[3] * f[3]); accumulatorSampleR += (bR[4] * f[4]); accumulatorSampleR += (bR[5] * f[5]); accumulatorSampleR += (bR[6] * f[6]); accumulatorSampleR += (bR[7] * f[7]); accumulatorSampleR += (bR[8] * f[8]); accumulatorSampleR += (bR[9] * f[9]); //we are doing our repetitive calculations on a separate value correctionSample = inputSampleL - accumulatorSampleL; //we're gonna apply the total effect of all these calculations as a single subtract //(formerly a more complicated algorithm) inputSampleL -= correctionSample; //applying the distance calculation to both the dry AND the noise output to blend them correctionSample = inputSampleR - accumulatorSampleR; //we're gonna apply the total effect of all these calculations as a single subtract //(formerly a more complicated algorithm) inputSampleR -= correctionSample; //applying the distance calculation to both the dry AND the noise output to blend them //sometimes I'm really tired and can't do stuff, and I remember trying to simplify this //and breaking it somehow. So, there ya go, strange obtuse code. //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }