/* ======================================== * NCSeventeen - NCSeventeen.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __NCSeventeen_H #include "NCSeventeen.h" #endif void NCSeventeen::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double inP2; double chebyshev; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double IIRscaleback = 0.0004716; double bassScaleback = 0.0002364; double trebleScaleback = 0.0005484; double addBassBuss = 0.000243; double addTrebBuss = 0.000407; double addShortBuss = 0.000326; IIRscaleback /= overallscale; bassScaleback /= overallscale; trebleScaleback /= overallscale; addBassBuss /= overallscale; addTrebBuss /= overallscale; addShortBuss /= overallscale; double limitingBass = 0.39; double limitingTreb = 0.6; double limiting = 0.36; double maxfeedBass = 0.972; double maxfeedTreb = 0.972; double maxfeed = 0.975; double bridgerectifier; long double inputSampleL; double lowSampleL = 0.0; double highSampleL; double distSampleL; double minusSampleL; double plusSampleL; long double inputSampleR; double lowSampleR = 0.0; double highSampleR; double distSampleR; double minusSampleR; double plusSampleR; double gain = pow(10.0,(A*24.0)/20); double outlevel = B; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } inputSampleL *= gain; inputSampleR *= gain; if (flip) { iirSampleAL = (iirSampleAL * 0.9) + (inputSampleL * 0.1); lowSampleL = iirSampleAL; iirSampleAR = (iirSampleAR * 0.9) + (inputSampleR * 0.1); lowSampleR = iirSampleAR; } else { iirSampleBL = (iirSampleBL * 0.9) + (inputSampleL * 0.1); lowSampleL = iirSampleBL; iirSampleBR = (iirSampleBR * 0.9) + (inputSampleR * 0.1); lowSampleR = iirSampleBR; } highSampleL = inputSampleL - lowSampleL; highSampleR = inputSampleR - lowSampleR; flip = !flip; //we now have two bands and the original source inP2 = lowSampleL * lowSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= basslevL; //second harmonic max +1 if (basslevL > 0) basslevL -= bassScaleback; if (basslevL < 0) basslevL += bassScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(lowSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = lowSampleL - distSampleL; plusSampleL = lowSampleL + distSampleL; if (minusSampleL > maxfeedBass) minusSampleL = maxfeedBass; if (plusSampleL > maxfeedBass) plusSampleL = maxfeedBass; if (plusSampleL < -maxfeedBass) plusSampleL = -maxfeedBass; if (minusSampleL < -maxfeedBass) minusSampleL = -maxfeedBass; if (lowSampleL > distSampleL) basslevL += (minusSampleL*addBassBuss); if (lowSampleL < -distSampleL) basslevL -= (plusSampleL*addBassBuss); if (basslevL > 1.0) basslevL = 1.0; if (basslevL < -1.0) basslevL = -1.0; bridgerectifier = fabs(lowSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleL > 0.0) lowSampleL = bridgerectifier; else lowSampleL = -bridgerectifier; //apply the distortion transform for reals lowSampleL /= (1.0+fabs(basslevL*limitingBass)); lowSampleL += chebyshev; //apply the correction measuresL inP2 = lowSampleR * lowSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= basslevR; //second harmonic max +1 if (basslevR > 0) basslevR -= bassScaleback; if (basslevR < 0) basslevR += bassScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(lowSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = lowSampleR - distSampleR; plusSampleR = lowSampleR + distSampleR; if (minusSampleR > maxfeedBass) minusSampleR = maxfeedBass; if (plusSampleR > maxfeedBass) plusSampleR = maxfeedBass; if (plusSampleR < -maxfeedBass) plusSampleR = -maxfeedBass; if (minusSampleR < -maxfeedBass) minusSampleR = -maxfeedBass; if (lowSampleR > distSampleR) basslevR += (minusSampleR*addBassBuss); if (lowSampleR < -distSampleR) basslevR -= (plusSampleR*addBassBuss); if (basslevR > 1.0) basslevR = 1.0; if (basslevR < -1.0) basslevR = -1.0; bridgerectifier = fabs(lowSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleR > 0.0) lowSampleR = bridgerectifier; else lowSampleR = -bridgerectifier; //apply the distortion transform for reals lowSampleR /= (1.0+fabs(basslevR*limitingBass)); lowSampleR += chebyshev; //apply the correction measuresR inP2 = highSampleL * highSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= treblevL; //second harmonic max +1 if (treblevL > 0) treblevL -= trebleScaleback; if (treblevL < 0) treblevL += trebleScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(highSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = highSampleL - distSampleL; plusSampleL = highSampleL + distSampleL; if (minusSampleL > maxfeedTreb) minusSampleL = maxfeedTreb; if (plusSampleL > maxfeedTreb) plusSampleL = maxfeedTreb; if (plusSampleL < -maxfeedTreb) plusSampleL = -maxfeedTreb; if (minusSampleL < -maxfeedTreb) minusSampleL = -maxfeedTreb; if (highSampleL > distSampleL) treblevL += (minusSampleL*addTrebBuss); if (highSampleL < -distSampleL) treblevL -= (plusSampleL*addTrebBuss); if (treblevL > 1.0) treblevL = 1.0; if (treblevL < -1.0) treblevL = -1.0; bridgerectifier = fabs(highSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleL > 0.0) highSampleL = bridgerectifier; else highSampleL = -bridgerectifier; //apply the distortion transform for reals highSampleL /= (1.0+fabs(treblevL*limitingTreb)); highSampleL += chebyshev; //apply the correction measuresL inP2 = highSampleR * highSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= treblevR; //second harmonic max +1 if (treblevR > 0) treblevR -= trebleScaleback; if (treblevR < 0) treblevR += trebleScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(highSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = highSampleR - distSampleR; plusSampleR = highSampleR + distSampleR; if (minusSampleR > maxfeedTreb) minusSampleR = maxfeedTreb; if (plusSampleR > maxfeedTreb) plusSampleR = maxfeedTreb; if (plusSampleR < -maxfeedTreb) plusSampleR = -maxfeedTreb; if (minusSampleR < -maxfeedTreb) minusSampleR = -maxfeedTreb; if (highSampleR > distSampleR) treblevR += (minusSampleR*addTrebBuss); if (highSampleR < -distSampleR) treblevR -= (plusSampleR*addTrebBuss); if (treblevR > 1.0) treblevR = 1.0; if (treblevR < -1.0) treblevR = -1.0; bridgerectifier = fabs(highSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleR > 0.0) highSampleR = bridgerectifier; else highSampleR = -bridgerectifier; //apply the distortion transform for reals highSampleR /= (1.0+fabs(treblevR*limitingTreb)); highSampleR += chebyshev; //apply the correction measuresR inputSampleL = lowSampleL + highSampleL; inputSampleR = lowSampleR + highSampleR; inP2 = inputSampleL * inputSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= cheblevL; //third harmonic max -1 if (cheblevL > 0) cheblevL -= (IIRscaleback); if (cheblevL < 0) cheblevL += (IIRscaleback); //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = inputSampleL - distSampleL; plusSampleL = inputSampleL + distSampleL; if (minusSampleL > maxfeed) minusSampleL = maxfeed; if (plusSampleL > maxfeed) plusSampleL = maxfeed; if (plusSampleL < -maxfeed) plusSampleL = -maxfeed; if (minusSampleL < -maxfeed) minusSampleL = -maxfeed; if (inputSampleL > distSampleL) cheblevL += (minusSampleL*addShortBuss); if (inputSampleL < -distSampleL) cheblevL -= (plusSampleL*addShortBuss); if (cheblevL > 1.0) cheblevL = 1.0; if (cheblevL < -1.0) cheblevL = -1.0; bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; //apply the distortion transform for reals inputSampleL /= (1.0+fabs(cheblevL*limiting)); inputSampleL += chebyshev; //apply the correction measuresL inP2 = inputSampleR * inputSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= cheblevR; //third harmonic max -1 if (cheblevR > 0) cheblevR -= IIRscaleback; if (cheblevR < 0) cheblevR += IIRscaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = inputSampleR - distSampleR; plusSampleR = inputSampleR + distSampleR; if (minusSampleR > maxfeed) minusSampleR = maxfeed; if (plusSampleR > maxfeed) plusSampleR = maxfeed; if (plusSampleR < -maxfeed) plusSampleR = -maxfeed; if (minusSampleR < -maxfeed) minusSampleR = -maxfeed; if (inputSampleR > distSampleR) cheblevR += (minusSampleR*addShortBuss); if (inputSampleR < -distSampleR) cheblevR -= (plusSampleR*addShortBuss); if (cheblevR > 1.0) cheblevR = 1.0; if (cheblevR < -1.0) cheblevR = -1.0; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; //apply the distortion transform for reals inputSampleR /= (1.0+fabs(cheblevR*limiting)); inputSampleR += chebyshev; //apply the correction measuresR if (outlevel < 1.0) { inputSampleL *= outlevel; inputSampleR *= outlevel; } if (inputSampleL > 0.95) inputSampleL = 0.95; if (inputSampleL < -0.95) inputSampleL = -0.95; if (inputSampleR > 0.95) inputSampleR = 0.95; if (inputSampleR < -0.95) inputSampleR = -0.95; //iron bar //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void NCSeventeen::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double inP2; double chebyshev; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double IIRscaleback = 0.0004716; double bassScaleback = 0.0002364; double trebleScaleback = 0.0005484; double addBassBuss = 0.000243; double addTrebBuss = 0.000407; double addShortBuss = 0.000326; IIRscaleback /= overallscale; bassScaleback /= overallscale; trebleScaleback /= overallscale; addBassBuss /= overallscale; addTrebBuss /= overallscale; addShortBuss /= overallscale; double limitingBass = 0.39; double limitingTreb = 0.6; double limiting = 0.36; double maxfeedBass = 0.972; double maxfeedTreb = 0.972; double maxfeed = 0.975; double bridgerectifier; long double inputSampleL; double lowSampleL = 0.0; double highSampleL; double distSampleL; double minusSampleL; double plusSampleL; long double inputSampleR; double lowSampleR = 0.0; double highSampleR; double distSampleR; double minusSampleR; double plusSampleR; double gain = pow(10.0,(A*24.0)/20); double outlevel = B; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } inputSampleL *= gain; inputSampleR *= gain; if (flip) { iirSampleAL = (iirSampleAL * 0.9) + (inputSampleL * 0.1); lowSampleL = iirSampleAL; iirSampleAR = (iirSampleAR * 0.9) + (inputSampleR * 0.1); lowSampleR = iirSampleAR; } else { iirSampleBL = (iirSampleBL * 0.9) + (inputSampleL * 0.1); lowSampleL = iirSampleBL; iirSampleBR = (iirSampleBR * 0.9) + (inputSampleR * 0.1); lowSampleR = iirSampleBR; } highSampleL = inputSampleL - lowSampleL; highSampleR = inputSampleR - lowSampleR; flip = !flip; //we now have two bands and the original source inP2 = lowSampleL * lowSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= basslevL; //second harmonic max +1 if (basslevL > 0) basslevL -= bassScaleback; if (basslevL < 0) basslevL += bassScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(lowSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = lowSampleL - distSampleL; plusSampleL = lowSampleL + distSampleL; if (minusSampleL > maxfeedBass) minusSampleL = maxfeedBass; if (plusSampleL > maxfeedBass) plusSampleL = maxfeedBass; if (plusSampleL < -maxfeedBass) plusSampleL = -maxfeedBass; if (minusSampleL < -maxfeedBass) minusSampleL = -maxfeedBass; if (lowSampleL > distSampleL) basslevL += (minusSampleL*addBassBuss); if (lowSampleL < -distSampleL) basslevL -= (plusSampleL*addBassBuss); if (basslevL > 1.0) basslevL = 1.0; if (basslevL < -1.0) basslevL = -1.0; bridgerectifier = fabs(lowSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleL > 0.0) lowSampleL = bridgerectifier; else lowSampleL = -bridgerectifier; //apply the distortion transform for reals lowSampleL /= (1.0+fabs(basslevL*limitingBass)); lowSampleL += chebyshev; //apply the correction measuresL inP2 = lowSampleR * lowSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= basslevR; //second harmonic max +1 if (basslevR > 0) basslevR -= bassScaleback; if (basslevR < 0) basslevR += bassScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(lowSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = lowSampleR - distSampleR; plusSampleR = lowSampleR + distSampleR; if (minusSampleR > maxfeedBass) minusSampleR = maxfeedBass; if (plusSampleR > maxfeedBass) plusSampleR = maxfeedBass; if (plusSampleR < -maxfeedBass) plusSampleR = -maxfeedBass; if (minusSampleR < -maxfeedBass) minusSampleR = -maxfeedBass; if (lowSampleR > distSampleR) basslevR += (minusSampleR*addBassBuss); if (lowSampleR < -distSampleR) basslevR -= (plusSampleR*addBassBuss); if (basslevR > 1.0) basslevR = 1.0; if (basslevR < -1.0) basslevR = -1.0; bridgerectifier = fabs(lowSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (lowSampleR > 0.0) lowSampleR = bridgerectifier; else lowSampleR = -bridgerectifier; //apply the distortion transform for reals lowSampleR /= (1.0+fabs(basslevR*limitingBass)); lowSampleR += chebyshev; //apply the correction measuresR inP2 = highSampleL * highSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= treblevL; //second harmonic max +1 if (treblevL > 0) treblevL -= trebleScaleback; if (treblevL < 0) treblevL += trebleScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(highSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = highSampleL - distSampleL; plusSampleL = highSampleL + distSampleL; if (minusSampleL > maxfeedTreb) minusSampleL = maxfeedTreb; if (plusSampleL > maxfeedTreb) plusSampleL = maxfeedTreb; if (plusSampleL < -maxfeedTreb) plusSampleL = -maxfeedTreb; if (minusSampleL < -maxfeedTreb) minusSampleL = -maxfeedTreb; if (highSampleL > distSampleL) treblevL += (minusSampleL*addTrebBuss); if (highSampleL < -distSampleL) treblevL -= (plusSampleL*addTrebBuss); if (treblevL > 1.0) treblevL = 1.0; if (treblevL < -1.0) treblevL = -1.0; bridgerectifier = fabs(highSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleL > 0.0) highSampleL = bridgerectifier; else highSampleL = -bridgerectifier; //apply the distortion transform for reals highSampleL /= (1.0+fabs(treblevL*limitingTreb)); highSampleL += chebyshev; //apply the correction measuresL inP2 = highSampleR * highSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= treblevR; //second harmonic max +1 if (treblevR > 0) treblevR -= trebleScaleback; if (treblevR < 0) treblevR += trebleScaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(highSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = highSampleR - distSampleR; plusSampleR = highSampleR + distSampleR; if (minusSampleR > maxfeedTreb) minusSampleR = maxfeedTreb; if (plusSampleR > maxfeedTreb) plusSampleR = maxfeedTreb; if (plusSampleR < -maxfeedTreb) plusSampleR = -maxfeedTreb; if (minusSampleR < -maxfeedTreb) minusSampleR = -maxfeedTreb; if (highSampleR > distSampleR) treblevR += (minusSampleR*addTrebBuss); if (highSampleR < -distSampleR) treblevR -= (plusSampleR*addTrebBuss); if (treblevR > 1.0) treblevR = 1.0; if (treblevR < -1.0) treblevR = -1.0; bridgerectifier = fabs(highSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (highSampleR > 0.0) highSampleR = bridgerectifier; else highSampleR = -bridgerectifier; //apply the distortion transform for reals highSampleR /= (1.0+fabs(treblevR*limitingTreb)); highSampleR += chebyshev; //apply the correction measuresR inputSampleL = lowSampleL + highSampleL; inputSampleR = lowSampleR + highSampleR; inP2 = inputSampleL * inputSampleL; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= cheblevL; //third harmonic max -1 if (cheblevL > 0) cheblevL -= (IIRscaleback); if (cheblevL < 0) cheblevL += (IIRscaleback); //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) distSampleL = bridgerectifier; else distSampleL = -bridgerectifier; minusSampleL = inputSampleL - distSampleL; plusSampleL = inputSampleL + distSampleL; if (minusSampleL > maxfeed) minusSampleL = maxfeed; if (plusSampleL > maxfeed) plusSampleL = maxfeed; if (plusSampleL < -maxfeed) plusSampleL = -maxfeed; if (minusSampleL < -maxfeed) minusSampleL = -maxfeed; if (inputSampleL > distSampleL) cheblevL += (minusSampleL*addShortBuss); if (inputSampleL < -distSampleL) cheblevL -= (plusSampleL*addShortBuss); if (cheblevL > 1.0) cheblevL = 1.0; if (cheblevL < -1.0) cheblevL = -1.0; bridgerectifier = fabs(inputSampleL); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; //apply the distortion transform for reals inputSampleL /= (1.0+fabs(cheblevL*limiting)); inputSampleL += chebyshev; //apply the correction measuresL inP2 = inputSampleR * inputSampleR; if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0; chebyshev = (2 * inP2); chebyshev *= cheblevR; //third harmonic max -1 if (cheblevR > 0) cheblevR -= IIRscaleback; if (cheblevR < 0) cheblevR += IIRscaleback; //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) distSampleR = bridgerectifier; else distSampleR = -bridgerectifier; minusSampleR = inputSampleR - distSampleR; plusSampleR = inputSampleR + distSampleR; if (minusSampleR > maxfeed) minusSampleR = maxfeed; if (plusSampleR > maxfeed) plusSampleR = maxfeed; if (plusSampleR < -maxfeed) plusSampleR = -maxfeed; if (minusSampleR < -maxfeed) minusSampleR = -maxfeed; if (inputSampleR > distSampleR) cheblevR += (minusSampleR*addShortBuss); if (inputSampleR < -distSampleR) cheblevR -= (plusSampleR*addShortBuss); if (cheblevR > 1.0) cheblevR = 1.0; if (cheblevR < -1.0) cheblevR = -1.0; bridgerectifier = fabs(inputSampleR); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; //apply the distortion transform for reals inputSampleR /= (1.0+fabs(cheblevR*limiting)); inputSampleR += chebyshev; //apply the correction measuresR if (outlevel < 1.0) { inputSampleL *= outlevel; inputSampleR *= outlevel; } if (inputSampleL > 0.95) inputSampleL = 0.95; if (inputSampleL < -0.95) inputSampleL = -0.95; if (inputSampleR > 0.95) inputSampleR = 0.95; if (inputSampleR < -0.95) inputSampleR = -0.95; //iron bar //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }