/* ======================================== * Monitoring - Monitoring.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Monitoring_H #include "Monitoring.h" #endif void Monitoring::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); int processing = (VstInt32)( A * 16.999 ); int am = (int)149.0 * overallscale; int bm = (int)179.0 * overallscale; int cm = (int)191.0 * overallscale; int dm = (int)223.0 * overallscale; //these are 'good' primes, spacing out the allpasses int allpasstemp; //for PeaksOnly biquadL[0] = 0.0375/overallscale; biquadL[1] = 0.1575; //define as AURAT, MONORAT, MONOLAT unless overridden if (processing == 7) {biquadL[0] = 0.0385/overallscale; biquadL[1] = 0.0825;} if (processing == 11) {biquadL[0] = 0.1245/overallscale; biquadL[1] = 0.46;} double K = tan(M_PI * biquadL[0]); double norm = 1.0 / (1.0 + K / biquadL[1] + K * K); biquadL[2] = K / biquadL[1] * norm; biquadL[4] = -biquadL[2]; //for bandpass, ignore [3] = 0.0 biquadL[5] = 2.0 * (K * K - 1.0) * norm; biquadL[6] = (1.0 - K / biquadL[1] + K * K) * norm; //for Bandpasses biquadR[0] = 0.0375/overallscale; biquadR[1] = 0.1575; //define as AURAT, MONORAT, MONOLAT unless overridden if (processing == 7) {biquadR[0] = 0.0385/overallscale; biquadR[1] = 0.0825;} if (processing == 11) {biquadR[0] = 0.1245/overallscale; biquadR[1] = 0.46;} K = tan(M_PI * biquadR[0]); norm = 1.0 / (1.0 + K / biquadR[1] + K * K); biquadR[2] = K / biquadR[1] * norm; biquadR[4] = -biquadR[2]; //for bandpass, ignore [3] = 0.0 biquadR[5] = 2.0 * (K * K - 1.0) * norm; biquadR[6] = (1.0 - K / biquadR[1] + K * K) * norm; //for Bandpasses while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37; if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37; switch (processing) { case 0: case 1: break; case 2: if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am; inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5; ax--; if (ax < 0 || ax > am) {ax = am;} inputSampleL += (aL[ax]); inputSampleR += (aR[ax]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = bx - 1; if (allpasstemp < 0 || allpasstemp > bm) allpasstemp = bm; inputSampleL -= bL[allpasstemp]*0.5; bL[bx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= bR[allpasstemp]*0.5; bR[bx] = inputSampleR; inputSampleR *= 0.5; bx--; if (bx < 0 || bx > bm) {bx = bm;} inputSampleL += (bL[bx]); inputSampleR += (bR[bx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = cx - 1; if (allpasstemp < 0 || allpasstemp > cm) allpasstemp = cm; inputSampleL -= cL[allpasstemp]*0.5; cL[cx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= cR[allpasstemp]*0.5; cR[cx] = inputSampleR; inputSampleR *= 0.5; cx--; if (cx < 0 || cx > cm) {cx = cm;} inputSampleL += (cL[cx]); inputSampleR += (cR[cx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm; inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5; dx--; if (dx < 0 || dx > dm) {dx = dm;} inputSampleL += (dL[dx]); inputSampleR += (dR[dx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect inputSampleL *= 0.63679; inputSampleR *= 0.63679; //scale it to 0dB output at full blast //PeaksOnly break; case 3: double trim; trim = 2.302585092994045684017991; //natural logarithm of 10 long double slewSample; slewSample = (inputSampleL - lastSampleL)*trim; lastSampleL = inputSampleL; if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0; inputSampleL = slewSample; slewSample = (inputSampleR - lastSampleR)*trim; lastSampleR = inputSampleR; if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0; inputSampleR = slewSample; //SlewOnly break; case 4: double iirAmount; iirAmount = (2250/44100.0) / overallscale; double gain; gain = 1.42; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; iirSampleAL = (iirSampleAL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL; iirSampleAR = (iirSampleAR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleBL = (iirSampleBL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL; iirSampleBR = (iirSampleBR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleCL = (iirSampleCL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL; iirSampleCR = (iirSampleCR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleDL = (iirSampleDL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL; iirSampleDR = (iirSampleDR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleEL = (iirSampleEL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL; iirSampleER = (iirSampleER * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleER; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleFL = (iirSampleFL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL; iirSampleFR = (iirSampleFR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleGL = (iirSampleGL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL; iirSampleGR = (iirSampleGR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleHL = (iirSampleHL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL; iirSampleHR = (iirSampleHR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleIL = (iirSampleIL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL; iirSampleIR = (iirSampleIR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleJL = (iirSampleJL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL; iirSampleJR = (iirSampleJR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleKL = (iirSampleKL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL; iirSampleKR = (iirSampleKR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleLL = (iirSampleLL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL; iirSampleLR = (iirSampleLR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleML = (iirSampleML * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleML; iirSampleMR = (iirSampleMR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleNL = (iirSampleNL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL; iirSampleNR = (iirSampleNR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleOL = (iirSampleOL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL; iirSampleOR = (iirSampleOR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSamplePL = (iirSamplePL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL; iirSamplePR = (iirSamplePR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleQL = (iirSampleQL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL; iirSampleQR = (iirSampleQR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleRL = (iirSampleRL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL; iirSampleRR = (iirSampleRR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleSL = (iirSampleSL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL; iirSampleSR = (iirSampleSR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleTL = (iirSampleTL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL; iirSampleTR = (iirSampleTR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleUL = (iirSampleUL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL; iirSampleUR = (iirSampleUR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleVL = (iirSampleVL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL; iirSampleVR = (iirSampleVR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleWL = (iirSampleWL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL; iirSampleWR = (iirSampleWR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleXL = (iirSampleXL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL; iirSampleXR = (iirSampleXR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleYL = (iirSampleYL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL; iirSampleYR = (iirSampleYR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleZL = (iirSampleZL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL; iirSampleZR = (iirSampleZR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //SubsOnly break; case 5: case 6: long double mid; mid = inputSampleL + inputSampleR; long double side; side = inputSampleL - inputSampleR; if (processing < 6) side = 0.0; else mid = 0.0; //mono monitoring, or side-only monitoring inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; break; case 7: case 8: case 9: case 10: case 11: //Bandpass: changes in EQ are up in the variable defining, not here //7 Vinyl, 8 9 10 Aurat, 11 Phone if (processing == 9) {inputSampleR = (inputSampleL + inputSampleR)*0.5;inputSampleL = 0.0;} if (processing == 10) {inputSampleL = (inputSampleL + inputSampleR)*0.5;inputSampleR = 0.0;} if (processing == 11) {long double M; M = (inputSampleL + inputSampleR)*0.5; inputSampleL = M;inputSampleR = M;} inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //encode Console5: good cleanness long double tempSampleL; tempSampleL = (inputSampleL * biquadL[2]) + biquadL[7]; biquadL[7] = (-tempSampleL * biquadL[5]) + biquadL[8]; biquadL[8] = (inputSampleL * biquadL[4]) - (tempSampleL * biquadL[6]); inputSampleL = tempSampleL; //like mono AU, 7 and 8 store L channel long double tempSampleR; tempSampleR = (inputSampleR * biquadR[2]) + biquadR[7]; biquadR[7] = (-tempSampleR * biquadR[5]) + biquadR[8]; biquadR[8] = (inputSampleR * biquadR[4]) - (tempSampleR * biquadR[6]); inputSampleR = tempSampleR; // we are using the mono configuration if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR); //amplitude aspect break; case 12: case 13: case 14: case 15: if (processing == 12) {inputSampleL *= 0.855; inputSampleR *= 0.855;} if (processing == 13) {inputSampleL *= 0.748; inputSampleR *= 0.748;} if (processing == 14) {inputSampleL *= 0.713; inputSampleR *= 0.713;} if (processing == 15) {inputSampleL *= 0.680; inputSampleR *= 0.680;} //we do a volume compensation immediately to gain stage stuff cleanly inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); long double drySampleL; drySampleL = inputSampleL; long double drySampleR; drySampleR = inputSampleR; //everything runs 'inside' Console long double bass; bass = (processing * processing * 0.00001) / overallscale; //we are using the iir filters from out of SubsOnly mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; iirSampleAL = (iirSampleAL * (1.0 - (bass*0.618))) + (side * bass * 0.618); side = side - iirSampleAL; inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //bass narrowing filter allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am; inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5; ax--; if (ax < 0 || ax > am) {ax = am;} inputSampleL += (aL[ax])*0.5; inputSampleR += (aR[ax])*0.5; if (ax == am) {inputSampleL += (aL[0])*0.5; inputSampleR += (aR[0])*0.5;} else {inputSampleL += (aL[ax+1])*0.5; inputSampleR += (aR[ax+1])*0.5;} //a darkened Midiverb-style allpass if (processing == 12) {inputSampleL *= 0.125; inputSampleR *= 0.125;} if (processing == 13) {inputSampleL *= 0.25; inputSampleR *= 0.25;} if (processing == 14) {inputSampleL *= 0.30; inputSampleR *= 0.30;} if (processing == 15) {inputSampleL *= 0.35; inputSampleR *= 0.35;} //Cans A suppresses the crossfeed more, Cans B makes it louder drySampleL += inputSampleR; drySampleR += inputSampleL; //the crossfeed allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm; inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5; dx--; if (dx < 0 || dx > dm) {dx = dm;} inputSampleL += (dL[dx])*0.5; inputSampleR += (dR[dx])*0.5; if (dx == dm) {inputSampleL += (dL[0])*0.5; inputSampleR += (dR[0])*0.5;} else {inputSampleL += (dL[dx+1])*0.5; inputSampleR += (dR[dx+1])*0.5;} //a darkened Midiverb-style allpass, which is stretching the previous one even more inputSampleL *= 0.25; inputSampleR *= 0.25; //for all versions of Cans the second level of bloom is this far down //and, remains on the opposite speaker rather than crossing again to the original side drySampleL += inputSampleR; drySampleR += inputSampleL; //add the crossfeed and very faint extra verbyness inputSampleL = drySampleL; inputSampleR = drySampleR; //and output our can-opened headphone feed mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; iirSampleAR = (iirSampleAR * (1.0 - bass)) + (side * bass); side = side - iirSampleAR; inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //bass narrowing filter if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //ConsoleBuss processing break; case 16: long double inputSample = (inputSampleL + inputSampleR) * 0.5; inputSampleL = -inputSample; inputSampleR = inputSample; break; } //begin Not Just Another Dither if (processing == 1) { inputSampleL = inputSampleL * 32768.0; //or 16 bit option inputSampleR = inputSampleR * 32768.0; //or 16 bit option } else { inputSampleL = inputSampleL * 8388608.0; //for literally everything else inputSampleR = inputSampleR * 8388608.0; //we will apply the 24 bit NJAD } //on the not unreasonable assumption that we are very likely playing back on 24 bit DAC //if we're not, then all we did was apply a Benford Realness function at 24 bits down. bool cutbinsL; cutbinsL = false; bool cutbinsR; cutbinsR = false; long double drySampleL; drySampleL = inputSampleL; long double drySampleR; drySampleR = inputSampleR; inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR; //NJAD L long double benfordize; benfordize = floor(inputSampleL); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; int hotbinA; hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored long double totalA; totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; if (bynL[hotbinA] > 982) cutbinsL = true; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else hotbinA = 10; //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; int hotbinB; hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled long double totalB; totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; if (bynL[hotbinB] > 982) cutbinsL = true; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else hotbinB = 10; //produce total number- smaller is closer to Benford real long double outputSample; if (totalA < totalB) {bynL[hotbinA] += 1; outputSample = floor(inputSampleL);} else {bynL[hotbinB] += 1; outputSample = floor(inputSampleL+1);} //assign the relevant one to the delay line //and floor/ceil signal accordingly if (cutbinsL) { bynL[1] *= 0.99; bynL[2] *= 0.99; bynL[3] *= 0.99; bynL[4] *= 0.99; bynL[5] *= 0.99; bynL[6] *= 0.99; bynL[7] *= 0.99; bynL[8] *= 0.99; bynL[9] *= 0.99; bynL[10] *= 0.99; } noiseShapingL += outputSample - drySampleL; if (noiseShapingL > fabs(inputSampleL)) noiseShapingL = fabs(inputSampleL); if (noiseShapingL < -fabs(inputSampleL)) noiseShapingL = -fabs(inputSampleL); if (processing == 1) inputSampleL = outputSample / 32768.0; else inputSampleL = outputSample / 8388608.0; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; //finished NJAD L //NJAD R benfordize = floor(inputSampleR); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; if (bynR[hotbinA] > 982) cutbinsR = true; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else hotbinA = 10; //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; if (bynR[hotbinB] > 982) cutbinsR = true; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else hotbinB = 10; //produce total number- smaller is closer to Benford real if (totalA < totalB) {bynR[hotbinA] += 1; outputSample = floor(inputSampleR);} else {bynR[hotbinB] += 1; outputSample = floor(inputSampleR+1);} //assign the relevant one to the delay line //and floor/ceil signal accordingly if (cutbinsR) { bynR[1] *= 0.99; bynR[2] *= 0.99; bynR[3] *= 0.99; bynR[4] *= 0.99; bynR[5] *= 0.99; bynR[6] *= 0.99; bynR[7] *= 0.99; bynR[8] *= 0.99; bynR[9] *= 0.99; bynR[10] *= 0.99; } noiseShapingR += outputSample - drySampleR; if (noiseShapingR > fabs(inputSampleR)) noiseShapingR = fabs(inputSampleR); if (noiseShapingR < -fabs(inputSampleR)) noiseShapingR = -fabs(inputSampleR); if (processing == 1) inputSampleR = outputSample / 32768.0; else inputSampleR = outputSample / 8388608.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //finished NJAD R //does not use 32 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Monitoring::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); int processing = (VstInt32)( A * 16.999 ); int am = (int)149.0 * overallscale; int bm = (int)179.0 * overallscale; int cm = (int)191.0 * overallscale; int dm = (int)223.0 * overallscale; //these are 'good' primes, spacing out the allpasses int allpasstemp; //for PeaksOnly biquadL[0] = 0.0375/overallscale; biquadL[1] = 0.1575; //define as AURAT, MONORAT, MONOLAT unless overridden if (processing == 7) {biquadL[0] = 0.0385/overallscale; biquadL[1] = 0.0825;} if (processing == 11) {biquadL[0] = 0.1245/overallscale; biquadL[1] = 0.46;} double K = tan(M_PI * biquadL[0]); double norm = 1.0 / (1.0 + K / biquadL[1] + K * K); biquadL[2] = K / biquadL[1] * norm; biquadL[4] = -biquadL[2]; //for bandpass, ignore [3] = 0.0 biquadL[5] = 2.0 * (K * K - 1.0) * norm; biquadL[6] = (1.0 - K / biquadL[1] + K * K) * norm; //for Bandpasses biquadR[0] = 0.0375/overallscale; biquadR[1] = 0.1575; //define as AURAT, MONORAT, MONOLAT unless overridden if (processing == 7) {biquadR[0] = 0.0385/overallscale; biquadR[1] = 0.0825;} if (processing == 11) {biquadR[0] = 0.1245/overallscale; biquadR[1] = 0.46;} K = tan(M_PI * biquadR[0]); norm = 1.0 / (1.0 + K / biquadR[1] + K * K); biquadR[2] = K / biquadR[1] * norm; biquadR[4] = -biquadR[2]; //for bandpass, ignore [3] = 0.0 biquadR[5] = 2.0 * (K * K - 1.0) * norm; biquadR[6] = (1.0 - K / biquadR[1] + K * K) * norm; //for Bandpasses while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43; if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43; switch (processing) { case 0: case 1: break; case 2: if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am; inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5; ax--; if (ax < 0 || ax > am) {ax = am;} inputSampleL += (aL[ax]); inputSampleR += (aR[ax]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = bx - 1; if (allpasstemp < 0 || allpasstemp > bm) allpasstemp = bm; inputSampleL -= bL[allpasstemp]*0.5; bL[bx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= bR[allpasstemp]*0.5; bR[bx] = inputSampleR; inputSampleR *= 0.5; bx--; if (bx < 0 || bx > bm) {bx = bm;} inputSampleL += (bL[bx]); inputSampleR += (bR[bx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = cx - 1; if (allpasstemp < 0 || allpasstemp > cm) allpasstemp = cm; inputSampleL -= cL[allpasstemp]*0.5; cL[cx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= cR[allpasstemp]*0.5; cR[cx] = inputSampleR; inputSampleR *= 0.5; cx--; if (cx < 0 || cx > cm) {cx = cm;} inputSampleL += (cL[cx]); inputSampleR += (cR[cx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm; inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5; dx--; if (dx < 0 || dx > dm) {dx = dm;} inputSampleL += (dL[dx]); inputSampleR += (dR[dx]); //a single Midiverb-style allpass if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect inputSampleL *= 0.63679; inputSampleR *= 0.63679; //scale it to 0dB output at full blast //PeaksOnly break; case 3: double trim; trim = 2.302585092994045684017991; //natural logarithm of 10 long double slewSample; slewSample = (inputSampleL - lastSampleL)*trim; lastSampleL = inputSampleL; if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0; inputSampleL = slewSample; slewSample = (inputSampleR - lastSampleR)*trim; lastSampleR = inputSampleR; if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0; inputSampleR = slewSample; //SlewOnly break; case 4: double iirAmount; iirAmount = (2250/44100.0) / overallscale; double gain; gain = 1.42; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; iirSampleAL = (iirSampleAL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL; iirSampleAR = (iirSampleAR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleBL = (iirSampleBL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL; iirSampleBR = (iirSampleBR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleCL = (iirSampleCL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL; iirSampleCR = (iirSampleCR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleDL = (iirSampleDL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL; iirSampleDR = (iirSampleDR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleEL = (iirSampleEL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL; iirSampleER = (iirSampleER * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleER; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleFL = (iirSampleFL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL; iirSampleFR = (iirSampleFR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleGL = (iirSampleGL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL; iirSampleGR = (iirSampleGR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleHL = (iirSampleHL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL; iirSampleHR = (iirSampleHR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleIL = (iirSampleIL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL; iirSampleIR = (iirSampleIR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleJL = (iirSampleJL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL; iirSampleJR = (iirSampleJR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleKL = (iirSampleKL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL; iirSampleKR = (iirSampleKR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleLL = (iirSampleLL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL; iirSampleLR = (iirSampleLR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleML = (iirSampleML * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleML; iirSampleMR = (iirSampleMR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleNL = (iirSampleNL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL; iirSampleNR = (iirSampleNR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleOL = (iirSampleOL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL; iirSampleOR = (iirSampleOR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSamplePL = (iirSamplePL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL; iirSamplePR = (iirSamplePR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleQL = (iirSampleQL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL; iirSampleQR = (iirSampleQR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleRL = (iirSampleRL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL; iirSampleRR = (iirSampleRR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleSL = (iirSampleSL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL; iirSampleSR = (iirSampleSR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleTL = (iirSampleTL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL; iirSampleTR = (iirSampleTR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleUL = (iirSampleUL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL; iirSampleUR = (iirSampleUR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleVL = (iirSampleVL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL; iirSampleVR = (iirSampleVR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleWL = (iirSampleWL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL; iirSampleWR = (iirSampleWR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleXL = (iirSampleXL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL; iirSampleXR = (iirSampleXR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleYL = (iirSampleYL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL; iirSampleYR = (iirSampleYR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR; inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleZL = (iirSampleZL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL; iirSampleZR = (iirSampleZR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //SubsOnly break; case 5: case 6: long double mid; mid = inputSampleL + inputSampleR; long double side; side = inputSampleL - inputSampleR; if (processing < 6) side = 0.0; else mid = 0.0; //mono monitoring, or side-only monitoring inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; break; case 7: case 8: case 9: case 10: case 11: //Bandpass: changes in EQ are up in the variable defining, not here //7 Vinyl, 8 9 10 Aurat, 11 Phone if (processing == 9) {inputSampleR = (inputSampleL + inputSampleR)*0.5;inputSampleL = 0.0;} if (processing == 10) {inputSampleL = (inputSampleL + inputSampleR)*0.5;inputSampleR = 0.0;} if (processing == 11) {long double M; M = (inputSampleL + inputSampleR)*0.5; inputSampleL = M;inputSampleR = M;} inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); //encode Console5: good cleanness long double tempSampleL; tempSampleL = (inputSampleL * biquadL[2]) + biquadL[7]; biquadL[7] = (-tempSampleL * biquadL[5]) + biquadL[8]; biquadL[8] = (inputSampleL * biquadL[4]) - (tempSampleL * biquadL[6]); inputSampleL = tempSampleL; //like mono AU, 7 and 8 store L channel long double tempSampleR; tempSampleR = (inputSampleR * biquadR[2]) + biquadR[7]; biquadR[7] = (-tempSampleR * biquadR[5]) + biquadR[8]; biquadR[8] = (inputSampleR * biquadR[4]) - (tempSampleR * biquadR[6]); inputSampleR = tempSampleR; // we are using the mono configuration if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR); //amplitude aspect break; case 12: case 13: case 14: case 15: if (processing == 12) {inputSampleL *= 0.855; inputSampleR *= 0.855;} if (processing == 13) {inputSampleL *= 0.748; inputSampleR *= 0.748;} if (processing == 14) {inputSampleL *= 0.713; inputSampleR *= 0.713;} if (processing == 15) {inputSampleL *= 0.680; inputSampleR *= 0.680;} //we do a volume compensation immediately to gain stage stuff cleanly inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR); long double drySampleL; drySampleL = inputSampleL; long double drySampleR; drySampleR = inputSampleR; //everything runs 'inside' Console long double bass; bass = (processing * processing * 0.00001) / overallscale; //we are using the iir filters from out of SubsOnly mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; iirSampleAL = (iirSampleAL * (1.0 - (bass*0.618))) + (side * bass * 0.618); side = side - iirSampleAL; inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //bass narrowing filter allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am; inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5; ax--; if (ax < 0 || ax > am) {ax = am;} inputSampleL += (aL[ax])*0.5; inputSampleR += (aR[ax])*0.5; if (ax == am) {inputSampleL += (aL[0])*0.5; inputSampleR += (aR[0])*0.5;} else {inputSampleL += (aL[ax+1])*0.5; inputSampleR += (aR[ax+1])*0.5;} //a darkened Midiverb-style allpass if (processing == 12) {inputSampleL *= 0.125; inputSampleR *= 0.125;} if (processing == 13) {inputSampleL *= 0.25; inputSampleR *= 0.25;} if (processing == 14) {inputSampleL *= 0.30; inputSampleR *= 0.30;} if (processing == 15) {inputSampleL *= 0.35; inputSampleR *= 0.35;} //Cans A suppresses the crossfeed more, Cans B makes it louder drySampleL += inputSampleR; drySampleR += inputSampleL; //the crossfeed allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm; inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5; inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5; dx--; if (dx < 0 || dx > dm) {dx = dm;} inputSampleL += (dL[dx])*0.5; inputSampleR += (dR[dx])*0.5; if (dx == dm) {inputSampleL += (dL[0])*0.5; inputSampleR += (dR[0])*0.5;} else {inputSampleL += (dL[dx+1])*0.5; inputSampleR += (dR[dx+1])*0.5;} //a darkened Midiverb-style allpass, which is stretching the previous one even more inputSampleL *= 0.25; inputSampleR *= 0.25; //for all versions of Cans the second level of bloom is this far down //and, remains on the opposite speaker rather than crossing again to the original side drySampleL += inputSampleR; drySampleR += inputSampleL; //add the crossfeed and very faint extra verbyness inputSampleL = drySampleL; inputSampleR = drySampleR; //and output our can-opened headphone feed mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; iirSampleAR = (iirSampleAR * (1.0 - bass)) + (side * bass); side = side - iirSampleAR; inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0; //bass narrowing filter if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //ConsoleBuss processing break; case 16: long double inputSample = (inputSampleL + inputSampleR) * 0.5; inputSampleL = -inputSample; inputSampleR = inputSample; break; } //begin Not Just Another Dither if (processing == 1) { inputSampleL = inputSampleL * 32768.0; //or 16 bit option inputSampleR = inputSampleR * 32768.0; //or 16 bit option } else { inputSampleL = inputSampleL * 8388608.0; //for literally everything else inputSampleR = inputSampleR * 8388608.0; //we will apply the 24 bit NJAD } //on the not unreasonable assumption that we are very likely playing back on 24 bit DAC //if we're not, then all we did was apply a Benford Realness function at 24 bits down. bool cutbinsL; cutbinsL = false; bool cutbinsR; cutbinsR = false; long double drySampleL; drySampleL = inputSampleL; long double drySampleR; drySampleR = inputSampleR; inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR; //NJAD L long double benfordize; benfordize = floor(inputSampleL); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; int hotbinA; hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored long double totalA; totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; if (bynL[hotbinA] > 982) cutbinsL = true; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else hotbinA = 10; //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; int hotbinB; hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled long double totalB; totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; if (bynL[hotbinB] > 982) cutbinsL = true; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else hotbinB = 10; //produce total number- smaller is closer to Benford real long double outputSample; if (totalA < totalB) {bynL[hotbinA] += 1; outputSample = floor(inputSampleL);} else {bynL[hotbinB] += 1; outputSample = floor(inputSampleL+1);} //assign the relevant one to the delay line //and floor/ceil signal accordingly if (cutbinsL) { bynL[1] *= 0.99; bynL[2] *= 0.99; bynL[3] *= 0.99; bynL[4] *= 0.99; bynL[5] *= 0.99; bynL[6] *= 0.99; bynL[7] *= 0.99; bynL[8] *= 0.99; bynL[9] *= 0.99; bynL[10] *= 0.99; } noiseShapingL += outputSample - drySampleL; if (noiseShapingL > fabs(inputSampleL)) noiseShapingL = fabs(inputSampleL); if (noiseShapingL < -fabs(inputSampleL)) noiseShapingL = -fabs(inputSampleL); if (processing == 1) inputSampleL = outputSample / 32768.0; else inputSampleL = outputSample / 8388608.0; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; //finished NJAD L //NJAD R benfordize = floor(inputSampleR); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; if (bynR[hotbinA] > 982) cutbinsR = true; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else hotbinA = 10; //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) benfordize /= 10; while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10; hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; if (bynR[hotbinB] > 982) cutbinsR = true; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else hotbinB = 10; //produce total number- smaller is closer to Benford real if (totalA < totalB) {bynR[hotbinA] += 1; outputSample = floor(inputSampleR);} else {bynR[hotbinB] += 1; outputSample = floor(inputSampleR+1);} //assign the relevant one to the delay line //and floor/ceil signal accordingly if (cutbinsR) { bynR[1] *= 0.99; bynR[2] *= 0.99; bynR[3] *= 0.99; bynR[4] *= 0.99; bynR[5] *= 0.99; bynR[6] *= 0.99; bynR[7] *= 0.99; bynR[8] *= 0.99; bynR[9] *= 0.99; bynR[10] *= 0.99; } noiseShapingR += outputSample - drySampleR; if (noiseShapingR > fabs(inputSampleR)) noiseShapingR = fabs(inputSampleR); if (noiseShapingR < -fabs(inputSampleR)) noiseShapingR = -fabs(inputSampleR); if (processing == 1) inputSampleR = outputSample / 32768.0; else inputSampleR = outputSample / 8388608.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //finished NJAD R //does not use 64 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }