/* ======================================== * Loud - Loud.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Loud_H #include "Loud.h" #endif void Loud::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double boost = pow(A+1.0,5); double output = B; double wet = C; double dry = 1.0-wet; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; double clamp; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; //begin L inputSampleL *= boost; clamp = inputSampleL - lastSampleL; if (clamp > 0) { inputSampleL = -(inputSampleL - 1.0); inputSampleL *= 1.2566108; if (inputSampleL < 0.0) inputSampleL = 0.0; if (inputSampleL > 3.141527) inputSampleL = 3.141527; inputSampleL = sin(inputSampleL) * overallscale; if (clamp > inputSampleL) clamp = inputSampleL; } if (clamp < 0) { inputSampleL += 1.0; inputSampleL *= 1.2566108; if (inputSampleL < 0.0) inputSampleL = 0.0; if (inputSampleL > 3.141527) inputSampleL = 3.141527; inputSampleL = -sin(inputSampleL) * overallscale; if (clamp < inputSampleL) clamp = inputSampleL; } inputSampleL = lastSampleL + clamp; lastSampleL = inputSampleL; //finished L //begin R inputSampleR *= boost; clamp = inputSampleR - lastSampleR; if (clamp > 0) { inputSampleR = -(inputSampleR - 1.0); inputSampleR *= 1.2566108; if (inputSampleR < 0.0) inputSampleR = 0.0; if (inputSampleR > 3.141527) inputSampleR = 3.141527; inputSampleR = sin(inputSampleR) * overallscale; if (clamp > inputSampleR) clamp = inputSampleR; } if (clamp < 0) { inputSampleR += 1.0; inputSampleR *= 1.2566108; if (inputSampleR < 0.0) inputSampleR = 0.0; if (inputSampleR > 3.141527) inputSampleR = 3.141527; inputSampleR = -sin(inputSampleR) * overallscale; if (clamp < inputSampleR) clamp = inputSampleR; } inputSampleR = lastSampleR + clamp; lastSampleR = inputSampleR; //finished R if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL*dry)+(inputSampleL*wet); inputSampleR = (drySampleR*dry)+(inputSampleR*wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Loud::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double boost = pow(A+1.0,5); double output = B; double wet = C; double dry = 1.0-wet; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; double clamp; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; //begin L inputSampleL *= boost; clamp = inputSampleL - lastSampleL; if (clamp > 0) { inputSampleL = -(inputSampleL - 1.0); inputSampleL *= 1.2566108; if (inputSampleL < 0.0) inputSampleL = 0.0; if (inputSampleL > 3.141527) inputSampleL = 3.141527; inputSampleL = sin(inputSampleL) * overallscale; if (clamp > inputSampleL) clamp = inputSampleL; } if (clamp < 0) { inputSampleL += 1.0; inputSampleL *= 1.2566108; if (inputSampleL < 0.0) inputSampleL = 0.0; if (inputSampleL > 3.141527) inputSampleL = 3.141527; inputSampleL = -sin(inputSampleL) * overallscale; if (clamp < inputSampleL) clamp = inputSampleL; } inputSampleL = lastSampleL + clamp; lastSampleL = inputSampleL; //finished L //begin R inputSampleR *= boost; clamp = inputSampleR - lastSampleR; if (clamp > 0) { inputSampleR = -(inputSampleR - 1.0); inputSampleR *= 1.2566108; if (inputSampleR < 0.0) inputSampleR = 0.0; if (inputSampleR > 3.141527) inputSampleR = 3.141527; inputSampleR = sin(inputSampleR) * overallscale; if (clamp > inputSampleR) clamp = inputSampleR; } if (clamp < 0) { inputSampleR += 1.0; inputSampleR *= 1.2566108; if (inputSampleR < 0.0) inputSampleR = 0.0; if (inputSampleR > 3.141527) inputSampleR = 3.141527; inputSampleR = -sin(inputSampleR) * overallscale; if (clamp < inputSampleR) clamp = inputSampleR; } inputSampleR = lastSampleR + clamp; lastSampleR = inputSampleR; //finished R if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL*dry)+(inputSampleL*wet); inputSampleR = (drySampleR*dry)+(inputSampleR*wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }