/* ======================================== * IronOxideClassic - IronOxideClassic.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __IronOxideClassic_H #include "IronOxideClassic.h" #endif void IronOxideClassic::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = pow(10.0,((A*36.0)-18.0)/20.0); double outputgain = pow(10.0,((C*36.0)-18.0)/20.0); double ips = (((B*B)*(B*B)*148.5)+1.5) * 1.1; //slight correction to dial in convincing ips settings if (ips < 1 || ips > 200){ips=33.0;} //sanity checks are always key double iirAmount = ips/430.0; //for low leaning double bridgerectifierL; double bridgerectifierR; double fastTaper = ips/15.0; double slowTaper = 2.0/(ips*ips); double lowspeedscale = (5.0/ips); int count; double temp; if (overallscale == 0) {fastTaper += 1.0; slowTaper += 1.0;} else { iirAmount /= overallscale; lowspeedscale *= overallscale; fastTaper = 1.0 + (fastTaper / overallscale); slowTaper = 1.0 + (slowTaper / overallscale); } long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (fpFlip) { iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount); iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleL -= iirSampleAL; inputSampleR -= iirSampleAR; } else { iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount); iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleL -= iirSampleBL; inputSampleR -= iirSampleBR; } //do IIR highpass for leaning out if (inputgain != 1.0) { inputSampleL *= inputgain; inputSampleR *= inputgain; } bridgerectifierL = fabs(inputSampleL); if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; bridgerectifierL = sin(bridgerectifierL); if (inputSampleL > 0.0) inputSampleL = bridgerectifierL; else inputSampleL = -bridgerectifierL; //preliminary gain stage using antialiasing bridgerectifierR = fabs(inputSampleR); if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierR = sin(bridgerectifierR); if (inputSampleR > 0.0) inputSampleR = bridgerectifierR; else inputSampleR = -bridgerectifierR; //preliminary gain stage using antialiasing //over to the Iron Oxide shaping code using inputsample if (gcount < 0 || gcount > 131) {gcount = 131;} count = gcount; //increment the counter dL[count+131] = dL[count] = inputSampleL; dR[count+131] = dR[count] = inputSampleR; if (fpFlip) { fastIIRAL = fastIIRAL/fastTaper; slowIIRAL = slowIIRAL/slowTaper; fastIIRAL += dL[count]; //scale stuff down fastIIRAR = fastIIRAR/fastTaper; slowIIRAR = slowIIRAR/slowTaper; fastIIRAR += dR[count]; //scale stuff down count += 3; temp = dL[count+127]; temp += dL[count+113]; temp += dL[count+109]; temp += dL[count+107]; temp += dL[count+103]; temp += dL[count+101]; temp += dL[count+97]; temp += dL[count+89]; temp += dL[count+83]; temp /= 2; temp += dL[count+79]; temp += dL[count+73]; temp += dL[count+71]; temp += dL[count+67]; temp += dL[count+61]; temp += dL[count+59]; temp += dL[count+53]; temp += dL[count+47]; temp += dL[count+43]; temp += dL[count+41]; temp += dL[count+37]; temp += dL[count+31]; temp += dL[count+29]; temp /= 2; temp += dL[count+23]; temp += dL[count+19]; temp += dL[count+17]; temp += dL[count+13]; temp += dL[count+11]; temp /= 2; temp += dL[count+7]; temp += dL[count+5]; temp += dL[count+3]; temp /= 2; temp += dL[count+2]; temp += dL[count+1]; //end L slowIIRAL += (temp/128); temp = dR[count+127]; temp += dR[count+113]; temp += dR[count+109]; temp += dR[count+107]; temp += dR[count+103]; temp += dR[count+101]; temp += dR[count+97]; temp += dR[count+89]; temp += dR[count+83]; temp /= 2; temp += dR[count+79]; temp += dR[count+73]; temp += dR[count+71]; temp += dR[count+67]; temp += dR[count+61]; temp += dR[count+59]; temp += dR[count+53]; temp += dR[count+47]; temp += dR[count+43]; temp += dR[count+41]; temp += dR[count+37]; temp += dR[count+31]; temp += dR[count+29]; temp /= 2; temp += dR[count+23]; temp += dR[count+19]; temp += dR[count+17]; temp += dR[count+13]; temp += dR[count+11]; temp /= 2; temp += dR[count+7]; temp += dR[count+5]; temp += dR[count+3]; temp /= 2; temp += dR[count+2]; temp += dR[count+1]; //end R slowIIRAR += (temp/128); inputSampleL = fastIIRAL - (slowIIRAL / slowTaper); inputSampleR = fastIIRAR - (slowIIRAR / slowTaper); } else { fastIIRBL = fastIIRBL/fastTaper; slowIIRBL = slowIIRBL/slowTaper; fastIIRBL += dL[count]; //scale stuff down fastIIRBR = fastIIRBR/fastTaper; slowIIRBR = slowIIRBR/slowTaper; fastIIRBR += dR[count]; //scale stuff down count += 3; temp = dL[count+127]; temp += dL[count+113]; temp += dL[count+109]; temp += dL[count+107]; temp += dL[count+103]; temp += dL[count+101]; temp += dL[count+97]; temp += dL[count+89]; temp += dL[count+83]; temp /= 2; temp += dL[count+79]; temp += dL[count+73]; temp += dL[count+71]; temp += dL[count+67]; temp += dL[count+61]; temp += dL[count+59]; temp += dL[count+53]; temp += dL[count+47]; temp += dL[count+43]; temp += dL[count+41]; temp += dL[count+37]; temp += dL[count+31]; temp += dL[count+29]; temp /= 2; temp += dL[count+23]; temp += dL[count+19]; temp += dL[count+17]; temp += dL[count+13]; temp += dL[count+11]; temp /= 2; temp += dL[count+7]; temp += dL[count+5]; temp += dL[count+3]; temp /= 2; temp += dL[count+2]; temp += dL[count+1]; slowIIRBL += (temp/128); temp = dR[count+127]; temp += dR[count+113]; temp += dR[count+109]; temp += dR[count+107]; temp += dR[count+103]; temp += dR[count+101]; temp += dR[count+97]; temp += dR[count+89]; temp += dR[count+83]; temp /= 2; temp += dR[count+79]; temp += dR[count+73]; temp += dR[count+71]; temp += dR[count+67]; temp += dR[count+61]; temp += dR[count+59]; temp += dR[count+53]; temp += dR[count+47]; temp += dR[count+43]; temp += dR[count+41]; temp += dR[count+37]; temp += dR[count+31]; temp += dR[count+29]; temp /= 2; temp += dR[count+23]; temp += dR[count+19]; temp += dR[count+17]; temp += dR[count+13]; temp += dR[count+11]; temp /= 2; temp += dR[count+7]; temp += dR[count+5]; temp += dR[count+3]; temp /= 2; temp += dR[count+2]; temp += dR[count+1]; slowIIRBR += (temp/128); inputSampleL = fastIIRBL - (slowIIRBL / slowTaper); inputSampleR = fastIIRBR - (slowIIRBR / slowTaper); } inputSampleL /= fastTaper; inputSampleR /= fastTaper; inputSampleL /= lowspeedscale; inputSampleR /= lowspeedscale; bridgerectifierL = fabs(inputSampleL); if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; bridgerectifierL = sin(bridgerectifierL); //can use as an output limiter if (inputSampleL > 0.0) inputSampleL = bridgerectifierL; else inputSampleL = -bridgerectifierL; //second stage of overdrive to prevent overs and allow bloody loud extremeness bridgerectifierR = fabs(inputSampleR); if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierR = sin(bridgerectifierR); //can use as an output limiter if (inputSampleR > 0.0) inputSampleR = bridgerectifierR; else inputSampleR = -bridgerectifierR; //second stage of overdrive to prevent overs and allow bloody loud extremeness if (outputgain != 1.0) { inputSampleL *= outputgain; inputSampleR *= outputgain; } fpFlip = !fpFlip; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void IronOxideClassic::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = pow(10.0,((A*36.0)-18.0)/20.0); double outputgain = pow(10.0,((C*36.0)-18.0)/20.0); double ips = (((B*B)*(B*B)*148.5)+1.5) * 1.1; //slight correction to dial in convincing ips settings if (ips < 1 || ips > 200){ips=33.0;} //sanity checks are always key double iirAmount = ips/430.0; //for low leaning double bridgerectifierL; double bridgerectifierR; double fastTaper = ips/15.0; double slowTaper = 2.0/(ips*ips); double lowspeedscale = (5.0/ips); int count; double temp; if (overallscale == 0) {fastTaper += 1.0; slowTaper += 1.0;} else { iirAmount /= overallscale; lowspeedscale *= overallscale; fastTaper = 1.0 + (fastTaper / overallscale); slowTaper = 1.0 + (slowTaper / overallscale); } long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (fpFlip) { iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount); iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleL -= iirSampleAL; inputSampleR -= iirSampleAR; } else { iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount); iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleL -= iirSampleBL; inputSampleR -= iirSampleBR; } //do IIR highpass for leaning out if (inputgain != 1.0) { inputSampleL *= inputgain; inputSampleR *= inputgain; } bridgerectifierL = fabs(inputSampleL); if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; bridgerectifierL = sin(bridgerectifierL); if (inputSampleL > 0.0) inputSampleL = bridgerectifierL; else inputSampleL = -bridgerectifierL; //preliminary gain stage using antialiasing bridgerectifierR = fabs(inputSampleR); if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierR = sin(bridgerectifierR); if (inputSampleR > 0.0) inputSampleR = bridgerectifierR; else inputSampleR = -bridgerectifierR; //preliminary gain stage using antialiasing //over to the Iron Oxide shaping code using inputsample if (gcount < 0 || gcount > 131) {gcount = 131;} count = gcount; //increment the counter dL[count+131] = dL[count] = inputSampleL; dR[count+131] = dR[count] = inputSampleR; if (fpFlip) { fastIIRAL = fastIIRAL/fastTaper; slowIIRAL = slowIIRAL/slowTaper; fastIIRAL += dL[count]; //scale stuff down fastIIRAR = fastIIRAR/fastTaper; slowIIRAR = slowIIRAR/slowTaper; fastIIRAR += dR[count]; //scale stuff down count += 3; temp = dL[count+127]; temp += dL[count+113]; temp += dL[count+109]; temp += dL[count+107]; temp += dL[count+103]; temp += dL[count+101]; temp += dL[count+97]; temp += dL[count+89]; temp += dL[count+83]; temp /= 2; temp += dL[count+79]; temp += dL[count+73]; temp += dL[count+71]; temp += dL[count+67]; temp += dL[count+61]; temp += dL[count+59]; temp += dL[count+53]; temp += dL[count+47]; temp += dL[count+43]; temp += dL[count+41]; temp += dL[count+37]; temp += dL[count+31]; temp += dL[count+29]; temp /= 2; temp += dL[count+23]; temp += dL[count+19]; temp += dL[count+17]; temp += dL[count+13]; temp += dL[count+11]; temp /= 2; temp += dL[count+7]; temp += dL[count+5]; temp += dL[count+3]; temp /= 2; temp += dL[count+2]; temp += dL[count+1]; //end L slowIIRAL += (temp/128); temp = dR[count+127]; temp += dR[count+113]; temp += dR[count+109]; temp += dR[count+107]; temp += dR[count+103]; temp += dR[count+101]; temp += dR[count+97]; temp += dR[count+89]; temp += dR[count+83]; temp /= 2; temp += dR[count+79]; temp += dR[count+73]; temp += dR[count+71]; temp += dR[count+67]; temp += dR[count+61]; temp += dR[count+59]; temp += dR[count+53]; temp += dR[count+47]; temp += dR[count+43]; temp += dR[count+41]; temp += dR[count+37]; temp += dR[count+31]; temp += dR[count+29]; temp /= 2; temp += dR[count+23]; temp += dR[count+19]; temp += dR[count+17]; temp += dR[count+13]; temp += dR[count+11]; temp /= 2; temp += dR[count+7]; temp += dR[count+5]; temp += dR[count+3]; temp /= 2; temp += dR[count+2]; temp += dR[count+1]; //end R slowIIRAR += (temp/128); inputSampleL = fastIIRAL - (slowIIRAL / slowTaper); inputSampleR = fastIIRAR - (slowIIRAR / slowTaper); } else { fastIIRBL = fastIIRBL/fastTaper; slowIIRBL = slowIIRBL/slowTaper; fastIIRBL += dL[count]; //scale stuff down fastIIRBR = fastIIRBR/fastTaper; slowIIRBR = slowIIRBR/slowTaper; fastIIRBR += dR[count]; //scale stuff down count += 3; temp = dL[count+127]; temp += dL[count+113]; temp += dL[count+109]; temp += dL[count+107]; temp += dL[count+103]; temp += dL[count+101]; temp += dL[count+97]; temp += dL[count+89]; temp += dL[count+83]; temp /= 2; temp += dL[count+79]; temp += dL[count+73]; temp += dL[count+71]; temp += dL[count+67]; temp += dL[count+61]; temp += dL[count+59]; temp += dL[count+53]; temp += dL[count+47]; temp += dL[count+43]; temp += dL[count+41]; temp += dL[count+37]; temp += dL[count+31]; temp += dL[count+29]; temp /= 2; temp += dL[count+23]; temp += dL[count+19]; temp += dL[count+17]; temp += dL[count+13]; temp += dL[count+11]; temp /= 2; temp += dL[count+7]; temp += dL[count+5]; temp += dL[count+3]; temp /= 2; temp += dL[count+2]; temp += dL[count+1]; slowIIRBL += (temp/128); temp = dR[count+127]; temp += dR[count+113]; temp += dR[count+109]; temp += dR[count+107]; temp += dR[count+103]; temp += dR[count+101]; temp += dR[count+97]; temp += dR[count+89]; temp += dR[count+83]; temp /= 2; temp += dR[count+79]; temp += dR[count+73]; temp += dR[count+71]; temp += dR[count+67]; temp += dR[count+61]; temp += dR[count+59]; temp += dR[count+53]; temp += dR[count+47]; temp += dR[count+43]; temp += dR[count+41]; temp += dR[count+37]; temp += dR[count+31]; temp += dR[count+29]; temp /= 2; temp += dR[count+23]; temp += dR[count+19]; temp += dR[count+17]; temp += dR[count+13]; temp += dR[count+11]; temp /= 2; temp += dR[count+7]; temp += dR[count+5]; temp += dR[count+3]; temp /= 2; temp += dR[count+2]; temp += dR[count+1]; slowIIRBR += (temp/128); inputSampleL = fastIIRBL - (slowIIRBL / slowTaper); inputSampleR = fastIIRBR - (slowIIRBR / slowTaper); } inputSampleL /= fastTaper; inputSampleR /= fastTaper; inputSampleL /= lowspeedscale; inputSampleR /= lowspeedscale; bridgerectifierL = fabs(inputSampleL); if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; bridgerectifierL = sin(bridgerectifierL); //can use as an output limiter if (inputSampleL > 0.0) inputSampleL = bridgerectifierL; else inputSampleL = -bridgerectifierL; //second stage of overdrive to prevent overs and allow bloody loud extremeness bridgerectifierR = fabs(inputSampleR); if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierR = sin(bridgerectifierR); //can use as an output limiter if (inputSampleR > 0.0) inputSampleR = bridgerectifierR; else inputSampleR = -bridgerectifierR; //second stage of overdrive to prevent overs and allow bloody loud extremeness if (outputgain != 1.0) { inputSampleL *= outputgain; inputSampleR *= outputgain; } fpFlip = !fpFlip; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }