/* ======================================== * Hombre - Hombre.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Hombre_H #include "Hombre.h" #endif void Hombre::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double target = A; double offsetA; double offsetB; int widthA = (int)(1.0*overallscale); int widthB = (int)(7.0*overallscale); //max 364 at 44.1, 792 at 96K double wet = B; double dry = 1.0 - wet; double totalL; double totalR; int count; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; slide = (slide * 0.9997)+(target*0.0003); offsetA = ((pow(slide,2)) * 77)+3.2; offsetB = (3.85 * offsetA)+41; offsetA *= overallscale; offsetB *= overallscale; //adjust for sample rate if (gcount < 1 || gcount > 2000) {gcount = 2000;} count = gcount; pL[count+2000] = pL[count] = inputSampleL; pR[count+2000] = pR[count] = inputSampleR; //double buffer count = (int)(gcount+floor(offsetA)); totalL = pL[count] * 0.391; //less as value moves away from .0 totalL += pL[count+widthA]; //we can assume always using this in one way or another? totalL += pL[count+widthA+widthA] * 0.391; //greater as value moves away from .0 totalR = pR[count] * 0.391; //less as value moves away from .0 totalR += pR[count+widthA]; //we can assume always using this in one way or another? totalR += pR[count+widthA+widthA] * 0.391; //greater as value moves away from .0 inputSampleL += ((totalL * 0.274)); inputSampleR += ((totalR * 0.274)); count = (int)(gcount+floor(offsetB)); totalL = pL[count] * 0.918; //less as value moves away from .0 totalL += pL[count+widthB]; //we can assume always using this in one way or another? totalL += pL[count+widthB+widthB] * 0.918; //greater as value moves away from .0 totalR = pR[count] * 0.918; //less as value moves away from .0 totalR += pR[count+widthB]; //we can assume always using this in one way or another? totalR += pR[count+widthB+widthB] * 0.918; //greater as value moves away from .0 inputSampleL -= ((totalL * 0.629)); inputSampleR -= ((totalR * 0.629)); inputSampleL /= 4; inputSampleR /= 4; gcount--; //still scrolling through the samples, remember if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Hombre::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double target = A; double offsetA; double offsetB; int widthA = (int)(1.0*overallscale); int widthB = (int)(7.0*overallscale); //max 364 at 44.1, 792 at 96K double wet = B; double dry = 1.0 - wet; double totalL; double totalR; int count; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; slide = (slide * 0.9997)+(target*0.0003); offsetA = ((pow(slide,2)) * 77)+3.2; offsetB = (3.85 * offsetA)+41; offsetA *= overallscale; offsetB *= overallscale; //adjust for sample rate if (gcount < 1 || gcount > 2000) {gcount = 2000;} count = gcount; pL[count+2000] = pL[count] = inputSampleL; pR[count+2000] = pR[count] = inputSampleR; //double buffer count = (int)(gcount+floor(offsetA)); totalL = pL[count] * 0.391; //less as value moves away from .0 totalL += pL[count+widthA]; //we can assume always using this in one way or another? totalL += pL[count+widthA+widthA] * 0.391; //greater as value moves away from .0 totalR = pR[count] * 0.391; //less as value moves away from .0 totalR += pR[count+widthA]; //we can assume always using this in one way or another? totalR += pR[count+widthA+widthA] * 0.391; //greater as value moves away from .0 inputSampleL += ((totalL * 0.274)); inputSampleR += ((totalR * 0.274)); count = (int)(gcount+floor(offsetB)); totalL = pL[count] * 0.918; //less as value moves away from .0 totalL += pL[count+widthB]; //we can assume always using this in one way or another? totalL += pL[count+widthB+widthB] * 0.918; //greater as value moves away from .0 totalR = pR[count] * 0.918; //less as value moves away from .0 totalR += pR[count+widthB]; //we can assume always using this in one way or another? totalR += pR[count+widthB+widthB] * 0.918; //greater as value moves away from .0 inputSampleL -= ((totalL * 0.629)); inputSampleR -= ((totalR * 0.629)); inputSampleL /= 4; inputSampleR /= 4; gcount--; //still scrolling through the samples, remember if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }