/* ======================================== * Holt - Holt.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Holt_H #include "Holt.h" #endif void Holt::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double alpha = pow(A,4)+0.00001; if (alpha > 1.0) alpha = 1.0; double beta = (alpha * pow(B,2))+0.00001; alpha += ((1.0-beta)*pow(A,3)); //correct for droop in frequency if (alpha > 1.0) alpha = 1.0; long double trend; long double forecast; //defining these here because we're copying the routine four times double aWet = 1.0; double bWet = 1.0; double cWet = 1.0; double dWet = C*4.0; //four-stage wet/dry control using progressive stages that bypass when not engaged if (dWet < 1.0) {aWet = dWet; bWet = 0.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 2.0) {bWet = dWet - 1.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 3.0) {cWet = dWet - 2.0; dWet = 0.0;} else {dWet -= 3.0;} //this is one way to make a little set of dry/wet stages that are successively added to the //output as the control is turned up. Each one independently goes from 0-1 and stays at 1 //beyond that point: this is a way to progressively add a 'black box' sound processing //which lets you fall through to simpler processing at lower settings. double gain = D; double wet = E; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (aWet > 0.0) { trend = (beta * (inputSampleL - previousSampleAL) + ((0.999-beta) * previousTrendAL)); forecast = previousSampleAL + previousTrendAL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleAL = inputSampleL; previousTrendAL = trend; inputSampleL = (inputSampleL * aWet) + (drySampleL * (1.0-aWet)); trend = (beta * (inputSampleR - previousSampleAR) + ((0.999-beta) * previousTrendAR)); forecast = previousSampleAR + previousTrendAR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleAR = inputSampleR; previousTrendAR = trend; inputSampleR = (inputSampleR * aWet) + (drySampleR * (1.0-aWet)); } if (bWet > 0.0) { trend = (beta * (inputSampleL - previousSampleBL) + ((0.999-beta) * previousTrendBL)); forecast = previousSampleBL + previousTrendBL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleBL = inputSampleL; previousTrendBL = trend; inputSampleL = (inputSampleL * bWet) + (previousSampleAL * (1.0-bWet)); trend = (beta * (inputSampleR - previousSampleBR) + ((0.999-beta) * previousTrendBR)); forecast = previousSampleBR + previousTrendBR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleBR = inputSampleR; previousTrendBR = trend; inputSampleR = (inputSampleR * bWet) + (previousSampleAR * (1.0-bWet)); } if (cWet > 0.0) { trend = (beta * (inputSampleL - previousSampleCL) + ((0.999-beta) * previousTrendCL)); forecast = previousSampleCL + previousTrendCL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleCL = inputSampleL; previousTrendCL = trend; inputSampleL = (inputSampleL * cWet) + (previousSampleBL * (1.0-cWet)); trend = (beta * (inputSampleR - previousSampleCR) + ((0.999-beta) * previousTrendCR)); forecast = previousSampleCR + previousTrendCR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleCR = inputSampleR; previousTrendCR = trend; inputSampleR = (inputSampleR * cWet) + (previousSampleBR * (1.0-cWet)); } if (dWet > 0.0) { trend = (beta * (inputSampleL - previousSampleDL) + ((0.999-beta) * previousTrendDL)); forecast = previousSampleDL + previousTrendDL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleDL = inputSampleL; previousTrendDL = trend; inputSampleL = (inputSampleL * dWet) + (previousSampleCL * (1.0-dWet)); trend = (beta * (inputSampleR - previousSampleDR) + ((0.999-beta) * previousTrendDR)); forecast = previousSampleDR + previousTrendDR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleDR = inputSampleR; previousTrendDR = trend; inputSampleR = (inputSampleR * dWet) + (previousSampleCR * (1.0-dWet)); } if (gain < 1.0) { inputSampleL *= gain; inputSampleR *= gain; } //clip to 1.2533141373155 to reach maximum output if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); if (wet < 1.0) { inputSampleL = (inputSampleL*wet)+(drySampleL*(1.0-wet)); inputSampleR = (inputSampleR*wet)+(drySampleR*(1.0-wet)); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Holt::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double alpha = pow(A,4)+0.00001; if (alpha > 1.0) alpha = 1.0; double beta = (alpha * pow(B,2))+0.00001; alpha += ((1.0-beta)*pow(A,3)); //correct for droop in frequency if (alpha > 1.0) alpha = 1.0; long double trend; long double forecast; //defining these here because we're copying the routine four times double aWet = 1.0; double bWet = 1.0; double cWet = 1.0; double dWet = C*4.0; //four-stage wet/dry control using progressive stages that bypass when not engaged if (dWet < 1.0) {aWet = dWet; bWet = 0.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 2.0) {bWet = dWet - 1.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 3.0) {cWet = dWet - 2.0; dWet = 0.0;} else {dWet -= 3.0;} //this is one way to make a little set of dry/wet stages that are successively added to the //output as the control is turned up. Each one independently goes from 0-1 and stays at 1 //beyond that point: this is a way to progressively add a 'black box' sound processing //which lets you fall through to simpler processing at lower settings. double gain = D; double wet = E; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (aWet > 0.0) { trend = (beta * (inputSampleL - previousSampleAL) + ((0.999-beta) * previousTrendAL)); forecast = previousSampleAL + previousTrendAL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleAL = inputSampleL; previousTrendAL = trend; inputSampleL = (inputSampleL * aWet) + (drySampleL * (1.0-aWet)); trend = (beta * (inputSampleR - previousSampleAR) + ((0.999-beta) * previousTrendAR)); forecast = previousSampleAR + previousTrendAR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleAR = inputSampleR; previousTrendAR = trend; inputSampleR = (inputSampleR * aWet) + (drySampleR * (1.0-aWet)); } if (bWet > 0.0) { trend = (beta * (inputSampleL - previousSampleBL) + ((0.999-beta) * previousTrendBL)); forecast = previousSampleBL + previousTrendBL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleBL = inputSampleL; previousTrendBL = trend; inputSampleL = (inputSampleL * bWet) + (previousSampleAL * (1.0-bWet)); trend = (beta * (inputSampleR - previousSampleBR) + ((0.999-beta) * previousTrendBR)); forecast = previousSampleBR + previousTrendBR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleBR = inputSampleR; previousTrendBR = trend; inputSampleR = (inputSampleR * bWet) + (previousSampleAR * (1.0-bWet)); } if (cWet > 0.0) { trend = (beta * (inputSampleL - previousSampleCL) + ((0.999-beta) * previousTrendCL)); forecast = previousSampleCL + previousTrendCL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleCL = inputSampleL; previousTrendCL = trend; inputSampleL = (inputSampleL * cWet) + (previousSampleBL * (1.0-cWet)); trend = (beta * (inputSampleR - previousSampleCR) + ((0.999-beta) * previousTrendCR)); forecast = previousSampleCR + previousTrendCR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleCR = inputSampleR; previousTrendCR = trend; inputSampleR = (inputSampleR * cWet) + (previousSampleBR * (1.0-cWet)); } if (dWet > 0.0) { trend = (beta * (inputSampleL - previousSampleDL) + ((0.999-beta) * previousTrendDL)); forecast = previousSampleDL + previousTrendDL; inputSampleL = (alpha * inputSampleL) + ((0.999-alpha) * forecast); previousSampleDL = inputSampleL; previousTrendDL = trend; inputSampleL = (inputSampleL * dWet) + (previousSampleCL * (1.0-dWet)); trend = (beta * (inputSampleR - previousSampleDR) + ((0.999-beta) * previousTrendDR)); forecast = previousSampleDR + previousTrendDR; inputSampleR = (alpha * inputSampleR) + ((0.999-alpha) * forecast); previousSampleDR = inputSampleR; previousTrendDR = trend; inputSampleR = (inputSampleR * dWet) + (previousSampleCR * (1.0-dWet)); } if (gain < 1.0) { inputSampleL *= gain; inputSampleR *= gain; } //clip to 1.2533141373155 to reach maximum output if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); if (wet < 1.0) { inputSampleL = (inputSampleL*wet)+(drySampleL*(1.0-wet)); inputSampleR = (inputSampleR*wet)+(drySampleR*(1.0-wet)); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }