/* ======================================== * HardVacuum - HardVacuum.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __HardVacuum_H #include "HardVacuum.h" #endif void HardVacuum::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double multistage = A*2.0; if (multistage > 1) multistage *= multistage; //WE MAKE LOUD NOISE! RAWWWK! double countdown; double warmth = B; double invwarmth = 1.0-warmth; warmth /= 1.57079633; double aura = C*3.1415926; double out = D; double wet = E; double dry = 1.0-wet; double drive; double positive; double negative; double bridgerectifierL; double bridgerectifierR; double skewL; double skewR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; skewL = (inputSampleL - lastSampleL); skewR = (inputSampleR - lastSampleR); lastSampleL = inputSampleL; lastSampleR = inputSampleR; //skew will be direction/angle bridgerectifierL = fabs(skewL); bridgerectifierR = fabs(skewR); if (bridgerectifierL > 3.1415926) bridgerectifierL = 3.1415926; if (bridgerectifierR > 3.1415926) bridgerectifierR = 3.1415926; //for skew we want it to go to zero effect again, so we use full range of the sine bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); if (skewL > 0) skewL = bridgerectifierL*aura; else skewL = -bridgerectifierL*aura; if (skewR > 0) skewR = bridgerectifierR*aura; else skewR = -bridgerectifierR*aura; //skew is now sined and clamped and then re-amplified again skewL *= inputSampleL; skewR *= inputSampleR; //cools off sparkliness and crossover distortion skewL *= 1.557079633; skewR *= 1.557079633; //crank up the gain on this so we can make it sing //We're doing all this here so skew isn't incremented by each stage countdown = multistage; //begin the torture while (countdown > 0) { if (countdown > 1.0) drive = 1.557079633; else drive = countdown * (1.0+(0.557079633*invwarmth)); //full crank stages followed by the proportional one //whee. 1 at full warmth to 1.5570etc at no warmth positive = drive - warmth; negative = drive + warmth; //set up things so we can do repeated iterations, assuming that //wet is always going to be 0-1 as in the previous plug. bridgerectifierL = fabs(inputSampleL); bridgerectifierR = fabs(inputSampleR); bridgerectifierL += skewL; bridgerectifierR += skewR; //apply it here so we don't overload if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); //the distortion section. bridgerectifierL *= drive; bridgerectifierR *= drive; bridgerectifierL += skewL; bridgerectifierR += skewR; //again if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); if (inputSampleL > 0) { inputSampleL = (inputSampleL*(1-positive+skewL))+(bridgerectifierL*(positive+skewL)); } else { inputSampleL = (inputSampleL*(1-negative+skewL))-(bridgerectifierL*(negative+skewL)); } if (inputSampleR > 0) { inputSampleR = (inputSampleR*(1-positive+skewR))+(bridgerectifierR*(positive+skewR)); } else { inputSampleR = (inputSampleR*(1-negative+skewR))-(bridgerectifierR*(negative+skewR)); } //blend according to positive and negative controls countdown -= 1.0; //step down a notch and repeat. } if (out != 1.0) { inputSampleL *= out; inputSampleR *= out; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void HardVacuum::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double multistage = A*2.0; if (multistage > 1) multistage *= multistage; //WE MAKE LOUD NOISE! RAWWWK! double countdown; double warmth = B; double invwarmth = 1.0-warmth; warmth /= 1.57079633; double aura = C*3.1415926; double out = D; double wet = E; double dry = 1.0-wet; double drive; double positive; double negative; double bridgerectifierL; double bridgerectifierR; double skewL; double skewR; double drySampleL; double drySampleR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; skewL = (inputSampleL - lastSampleL); skewR = (inputSampleR - lastSampleR); lastSampleL = inputSampleL; lastSampleR = inputSampleR; //skew will be direction/angle bridgerectifierL = fabs(skewL); bridgerectifierR = fabs(skewR); if (bridgerectifierL > 3.1415926) bridgerectifierL = 3.1415926; if (bridgerectifierR > 3.1415926) bridgerectifierR = 3.1415926; //for skew we want it to go to zero effect again, so we use full range of the sine bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); if (skewL > 0) skewL = bridgerectifierL*aura; else skewL = -bridgerectifierL*aura; if (skewR > 0) skewR = bridgerectifierR*aura; else skewR = -bridgerectifierR*aura; //skew is now sined and clamped and then re-amplified again skewL *= inputSampleL; skewR *= inputSampleR; //cools off sparkliness and crossover distortion skewL *= 1.557079633; skewR *= 1.557079633; //crank up the gain on this so we can make it sing //We're doing all this here so skew isn't incremented by each stage countdown = multistage; //begin the torture while (countdown > 0) { if (countdown > 1.0) drive = 1.557079633; else drive = countdown * (1.0+(0.557079633*invwarmth)); //full crank stages followed by the proportional one //whee. 1 at full warmth to 1.5570etc at no warmth positive = drive - warmth; negative = drive + warmth; //set up things so we can do repeated iterations, assuming that //wet is always going to be 0-1 as in the previous plug. bridgerectifierL = fabs(inputSampleL); bridgerectifierR = fabs(inputSampleR); bridgerectifierL += skewL; bridgerectifierR += skewR; //apply it here so we don't overload if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); //the distortion section. bridgerectifierL *= drive; bridgerectifierR *= drive; bridgerectifierL += skewL; bridgerectifierR += skewR; //again if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633; if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633; bridgerectifierL = sin(bridgerectifierL); bridgerectifierR = sin(bridgerectifierR); if (inputSampleL > 0) { inputSampleL = (inputSampleL*(1-positive+skewL))+(bridgerectifierL*(positive+skewL)); } else { inputSampleL = (inputSampleL*(1-negative+skewL))-(bridgerectifierL*(negative+skewL)); } if (inputSampleR > 0) { inputSampleR = (inputSampleR*(1-positive+skewR))+(bridgerectifierR*(positive+skewR)); } else { inputSampleR = (inputSampleR*(1-negative+skewR))-(bridgerectifierR*(negative+skewR)); } //blend according to positive and negative controls countdown -= 1.0; //step down a notch and repeat. } if (out != 1.0) { inputSampleL *= out; inputSampleR *= out; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }