/* ======================================== * Ensemble - Ensemble.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Ensemble_H #include "Ensemble.h" #endif void Ensemble::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double spd = pow(0.4+(B/12),10); spd *= overallscale; double depth = 0.002 / spd; double tupi = 3.141592653589793238 * 2.0; double taps = floor((A*46.0)+2.9); double brighten = C; double wet = D; double dry = 1.0 - wet; double hapi = 3.141592653589793238 / taps; double offset; double floffset; double start[49]; double sinoffset[49]; double speed[49]; int count; int ensemble; double tempL; double tempR; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; //now we'll precalculate some stuff that needn't be in every sample for(count = 1; count <= taps; count++) { start[count] = depth * count; sinoffset[count] = hapi * (count-1); speed[count] = spd / (1 + (count/taps)); } //that's for speeding up things in the sample-processing area while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; airFactorL = airPrevL - inputSampleL; if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;} else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;} airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001; airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001; airPrevL = inputSampleL; inputSampleL += (airFactorL*brighten); //air, compensates for loss of highs in flanger's interpolation airFactorR = airPrevR - inputSampleR; if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;} else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;} airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001; airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001; airPrevR = inputSampleR; inputSampleR += (airFactorR*brighten); //air, compensates for loss of highs in flanger's interpolation fpFlip = !fpFlip; if (gcount < 1 || gcount > 32767) {gcount = 32767;} count = gcount; dL[count+32767] = dL[count] = tempL = inputSampleL; dR[count+32767] = dR[count] = tempR = inputSampleR; //double buffer for(ensemble = 1; ensemble <= taps; ensemble++) { offset = start[ensemble] + (depth * sin(sweep[ensemble]+sinoffset[ensemble])); floffset = offset-floor(offset); count = gcount + (int)floor(offset); tempL += dL[count] * (1-floffset); //less as value moves away from .0 tempL += dL[count+1]; //we can assume always using this in one way or another? tempL += dL[count+2] * floffset; //greater as value moves away from .0 tempL -= ((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50; //interpolation hacks 'r us tempR += dR[count] * (1-floffset); //less as value moves away from .0 tempR += dR[count+1]; //we can assume always using this in one way or another? tempR += dR[count+2] * floffset; //greater as value moves away from .0 tempR -= ((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50; //interpolation hacks 'r us sweep[ensemble] += speed[ensemble]; if (sweep[ensemble] > tupi){sweep[ensemble] -= tupi;} } gcount--; //still scrolling through the samples, remember inputSampleL = tempL/(4.0*sqrt(taps)); inputSampleR = tempR/(4.0*sqrt(taps)); if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Ensemble::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double spd = pow(0.4+(B/12),10); spd *= overallscale; double depth = 0.002 / spd; double tupi = 3.141592653589793238 * 2.0; double taps = floor((A*46.0)+2.9); double brighten = C; double wet = D; double dry = 1.0 - wet; double hapi = 3.141592653589793238 / taps; double offset; double floffset; double start[49]; double sinoffset[49]; double speed[49]; int count; int ensemble; double tempL; double tempR; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; //now we'll precalculate some stuff that needn't be in every sample for(count = 1; count <= taps; count++) { start[count] = depth * count; sinoffset[count] = hapi * (count-1); speed[count] = spd / (1 + (count/taps)); } //that's for speeding up things in the sample-processing area while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; airFactorL = airPrevL - inputSampleL; if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;} else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;} airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001; airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001; airPrevL = inputSampleL; inputSampleL += (airFactorL*brighten); //air, compensates for loss of highs in flanger's interpolation airFactorR = airPrevR - inputSampleR; if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;} else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;} airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001; airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001; airPrevR = inputSampleR; inputSampleR += (airFactorR*brighten); //air, compensates for loss of highs in flanger's interpolation fpFlip = !fpFlip; if (gcount < 1 || gcount > 32767) {gcount = 32767;} count = gcount; dL[count+32767] = dL[count] = tempL = inputSampleL; dR[count+32767] = dR[count] = tempR = inputSampleR; //double buffer for(ensemble = 1; ensemble <= taps; ensemble++) { offset = start[ensemble] + (depth * sin(sweep[ensemble]+sinoffset[ensemble])); floffset = offset-floor(offset); count = gcount + (int)floor(offset); tempL += dL[count] * (1-floffset); //less as value moves away from .0 tempL += dL[count+1]; //we can assume always using this in one way or another? tempL += dL[count+2] * floffset; //greater as value moves away from .0 tempL -= ((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50; //interpolation hacks 'r us tempR += dR[count] * (1-floffset); //less as value moves away from .0 tempR += dR[count+1]; //we can assume always using this in one way or another? tempR += dR[count+2] * floffset; //greater as value moves away from .0 tempR -= ((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50; //interpolation hacks 'r us sweep[ensemble] += speed[ensemble]; if (sweep[ensemble] > tupi){sweep[ensemble] -= tupi;} } gcount--; //still scrolling through the samples, remember inputSampleL = tempL/(4.0*sqrt(taps)); inputSampleR = tempR/(4.0*sqrt(taps)); if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }