/* ======================================== * DubCenter - DubCenter.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __DubCenter_H #include "DubCenter.h" #endif void DubCenter::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double driveone = pow(A*3.0,2); double driveoutput = (B*2.0)-1.0; double iirAmount = ((C*0.33)+0.1)/overallscale; double ataLowpassL; double ataLowpassR; double ataLowpass; double randy; double invrandy; double HeadBump = 0.0; double BassGain = D * 0.1; double HeadBumpFreq = ((E*0.1)+0.0001)/overallscale; double iirBmount = HeadBumpFreq/44.1; double altBmount = 1.0 - iirBmount; double BassOutGain = (F*2.0)-1.0; double SubBump = 0.0; double SubGain = G * 0.1; double SubBumpFreq = ((H*0.1)+0.0001)/overallscale; double iirCmount = SubBumpFreq/44.1; double altCmount = 1.0 - iirCmount; double SubOutGain = (I*2.0)-1.0; double clamp = 0.0; double out; double fuzz = 0.111; double wet = J; double dry = 1.0-wet; double glitch = 0.60; double tempSample; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; // here's the plan. // Grind Boost // Grind Output Level // Bass Split Freq // Bass Drive // Bass Voicing // Bass Output Level // Sub Oct Drive // Sub Voicing // Sub Output Level // Dry/Wet oscGate += fabs((inputSampleL + inputSampleR) * 5.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (flip) { tempSample = inputSampleL; iirDriveSampleAL = (iirDriveSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleAL; iirDriveSampleCL = (iirDriveSampleCL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleCL; iirDriveSampleEL = (iirDriveSampleEL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleEL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleAR = (iirDriveSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleAR; iirDriveSampleCR = (iirDriveSampleCR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleCR; iirDriveSampleER = (iirDriveSampleER * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleER; ataLowpassR = tempSample - inputSampleR; } else { tempSample = inputSampleL; iirDriveSampleBL = (iirDriveSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleBL; iirDriveSampleDL = (iirDriveSampleDL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleDL; iirDriveSampleFL = (iirDriveSampleFL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleFL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleBR = (iirDriveSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleBR; iirDriveSampleDR = (iirDriveSampleDR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleDR; iirDriveSampleFR = (iirDriveSampleFR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleFR; ataLowpassR = tempSample - inputSampleR; } //highpass section if (inputSampleL > 1.0) {inputSampleL = 1.0;} if (inputSampleL < -1.0) {inputSampleL = -1.0;} if (inputSampleR > 1.0) {inputSampleR = 1.0;} if (inputSampleR < -1.0) {inputSampleR = -1.0;} out = driveone; while (out > glitch) { out -= glitch; inputSampleL -= (inputSampleL * (fabs(inputSampleL) * glitch) * (fabs(inputSampleL) * glitch) ); inputSampleL *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleL -= (inputSampleL * (fabs(inputSampleL) * out) * (fabs(inputSampleL) * out) ); inputSampleL *= (1.0+out); out = driveone; while (out > glitch) { out -= glitch; inputSampleR -= (inputSampleR * (fabs(inputSampleR) * glitch) * (fabs(inputSampleR) * glitch) ); inputSampleR *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleR -= (inputSampleR * (fabs(inputSampleR) * out) * (fabs(inputSampleR) * out) ); inputSampleR *= (1.0+out); ataLowpass = (ataLowpassL + ataLowpassR) / 2.0; if (ataLowpass > 0) {if (WasNegative){SubOctave = !SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleY; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += (SubBump * SubGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * SubBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += (SubBump * SubGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * SubBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += (SubBump * SubGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * SubBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleZ; inputSampleL *= driveoutput; //start with the drive section then add lows and subs inputSampleR *= driveoutput; //start with the drive section then add lows and subs inputSampleL += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleL += ((SubBump + lastSubBump) * SubOutGain); inputSampleR += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleR += ((SubBump + lastSubBump) * SubOutGain); lastHeadBump = HeadBump; lastSubBump = SubBump; if (wet != 1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //Dry/Wet control, defaults to the last slider flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void DubCenter::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double driveone = pow(A*3.0,2); double driveoutput = (B*2.0)-1.0; double iirAmount = ((C*0.33)+0.1)/overallscale; double ataLowpassL; double ataLowpassR; double ataLowpass; double randy; double invrandy; double HeadBump = 0.0; double BassGain = D * 0.1; double HeadBumpFreq = ((E*0.1)+0.0001)/overallscale; double iirBmount = HeadBumpFreq/44.1; double altBmount = 1.0 - iirBmount; double BassOutGain = (F*2.0)-1.0; double SubBump = 0.0; double SubGain = G * 0.1; double SubBumpFreq = ((H*0.1)+0.0001)/overallscale; double iirCmount = SubBumpFreq/44.1; double altCmount = 1.0 - iirCmount; double SubOutGain = (I*2.0)-1.0; double clamp = 0.0; double out; double fuzz = 0.111; double wet = J; double dry = 1.0-wet; double glitch = 0.60; double tempSample; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; // here's the plan. // Grind Boost // Grind Output Level // Bass Split Freq // Bass Drive // Bass Voicing // Bass Output Level // Sub Oct Drive // Sub Voicing // Sub Output Level // Dry/Wet oscGate += fabs((inputSampleL + inputSampleR) * 5.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (flip) { tempSample = inputSampleL; iirDriveSampleAL = (iirDriveSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleAL; iirDriveSampleCL = (iirDriveSampleCL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleCL; iirDriveSampleEL = (iirDriveSampleEL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleEL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleAR = (iirDriveSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleAR; iirDriveSampleCR = (iirDriveSampleCR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleCR; iirDriveSampleER = (iirDriveSampleER * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleER; ataLowpassR = tempSample - inputSampleR; } else { tempSample = inputSampleL; iirDriveSampleBL = (iirDriveSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleBL; iirDriveSampleDL = (iirDriveSampleDL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleDL; iirDriveSampleFL = (iirDriveSampleFL * (1 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirDriveSampleFL; ataLowpassL = tempSample - inputSampleL; tempSample = inputSampleR; iirDriveSampleBR = (iirDriveSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleBR; iirDriveSampleDR = (iirDriveSampleDR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleDR; iirDriveSampleFR = (iirDriveSampleFR * (1 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirDriveSampleFR; ataLowpassR = tempSample - inputSampleR; } //highpass section if (inputSampleL > 1.0) {inputSampleL = 1.0;} if (inputSampleL < -1.0) {inputSampleL = -1.0;} if (inputSampleR > 1.0) {inputSampleR = 1.0;} if (inputSampleR < -1.0) {inputSampleR = -1.0;} out = driveone; while (out > glitch) { out -= glitch; inputSampleL -= (inputSampleL * (fabs(inputSampleL) * glitch) * (fabs(inputSampleL) * glitch) ); inputSampleL *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleL -= (inputSampleL * (fabs(inputSampleL) * out) * (fabs(inputSampleL) * out) ); inputSampleL *= (1.0+out); out = driveone; while (out > glitch) { out -= glitch; inputSampleR -= (inputSampleR * (fabs(inputSampleR) * glitch) * (fabs(inputSampleR) * glitch) ); inputSampleR *= (1.0+glitch); } //that's taken care of the really high gain stuff inputSampleR -= (inputSampleR * (fabs(inputSampleR) * out) * (fabs(inputSampleR) * out) ); inputSampleR *= (1.0+out); ataLowpass = (ataLowpassL + ataLowpassR) / 2.0; if (ataLowpass > 0) {if (WasNegative){SubOctave = !SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * altBmount) + (ataLowpass * iirBmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * altBmount) + (HeadBump * iirBmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleY; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += (SubBump * SubGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * SubBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += (SubBump * SubGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * SubBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += (SubBump * SubGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * SubBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * altCmount) + (SubBump * iirCmount); SubBump -= iirSampleZ; inputSampleL *= driveoutput; //start with the drive section then add lows and subs inputSampleR *= driveoutput; //start with the drive section then add lows and subs inputSampleL += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleL += ((SubBump + lastSubBump) * SubOutGain); inputSampleR += ((HeadBump + lastHeadBump) * BassOutGain); inputSampleR += ((SubBump + lastSubBump) * SubOutGain); lastHeadBump = HeadBump; lastSubBump = SubBump; if (wet != 1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //Dry/Wet control, defaults to the last slider flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }