/* ======================================== * Ditherbox - Ditherbox.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Ditherbox_H #include "Ditherbox.h" #endif void Ditherbox::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; int dtype = (int)(A * 24.999)+1; // +1 for Reaper bug workaround long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double iirAmount = 2250/44100.0; long double gaintarget = 1.42; long double gain; iirAmount /= overallscale; long double altAmount = 1.0 - iirAmount; long double outputSampleL; long double outputSampleR; long double silhouette; long double smoother; long double bridgerectifier; long double benfordize; int hotbinA; int hotbinB; long double totalA; long double totalB; long double contingentRnd; long double absSample; long double contingent; long double randyConstant = 1.61803398874989484820458683436563811772030917980576; long double omegaConstant = 0.56714329040978387299996866221035554975381578718651; long double expConstant = 0.06598803584531253707679018759684642493857704825279; long double trim = 2.302585092994045684017991; //natural logarithm of 10 bool highRes = false; bool dithering = true; if (dtype > 11){highRes = true; dtype -= 11;} if (dtype > 11){dithering = false; highRes = false;} //follow up by switching high res back off for the monitoring while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } float drySampleL = inputSampleL; float drySampleR = inputSampleR; if (dtype == 8) {inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR;} if (dithering) {inputSampleL *= 32768.0; inputSampleR *= 32768.0;} //denormalizing as way of controlling insane detail boosting if (highRes) {inputSampleL *= 256.0; inputSampleR *= 256.0;} //256 for 16/24 version switch (dtype) { case 1: inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); //truncate break; case 2: inputSampleL += (rand()/(double)RAND_MAX); inputSampleL -= 0.5; inputSampleL = floor(inputSampleL); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR -= 0.5; inputSampleR = floor(inputSampleR); //flat dither break; case 3: inputSampleL += (rand()/(double)RAND_MAX); inputSampleL += (rand()/(double)RAND_MAX); inputSampleL -= 1.0; inputSampleL = floor(inputSampleL); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR -= 1.0; inputSampleR = floor(inputSampleR); //TPDF dither break; case 4: currentDitherL = (rand()/(double)RAND_MAX); inputSampleL += currentDitherL; inputSampleL -= lastSampleL; inputSampleL = floor(inputSampleL); lastSampleL = currentDitherL; currentDitherR = (rand()/(double)RAND_MAX); inputSampleR += currentDitherR; inputSampleR -= lastSampleR; inputSampleR = floor(inputSampleR); lastSampleR = currentDitherR; //Paul dither break; case 5: nsL[9] = nsL[8]; nsL[8] = nsL[7]; nsL[7] = nsL[6]; nsL[6] = nsL[5]; nsL[5] = nsL[4]; nsL[4] = nsL[3]; nsL[3] = nsL[2]; nsL[2] = nsL[1]; nsL[1] = nsL[0]; nsL[0] = (rand()/(double)RAND_MAX); currentDitherL = (nsL[0] * 0.061); currentDitherL -= (nsL[1] * 0.11); currentDitherL += (nsL[8] * 0.126); currentDitherL -= (nsL[7] * 0.23); currentDitherL += (nsL[2] * 0.25); currentDitherL -= (nsL[3] * 0.43); currentDitherL += (nsL[6] * 0.5); currentDitherL -= nsL[5]; currentDitherL += nsL[4]; //this sounds different from doing it in order of sample position //cumulative tiny errors seem to build up even at this buss depth //considerably more pronounced at 32 bit float. //Therefore we add the most significant components LAST. //trying to keep values on like exponents of the floating point value. inputSampleL += currentDitherL; inputSampleL = floor(inputSampleL); //done with L nsR[9] = nsR[8]; nsR[8] = nsR[7]; nsR[7] = nsR[6]; nsR[6] = nsR[5]; nsR[5] = nsR[4]; nsR[4] = nsR[3]; nsR[3] = nsR[2]; nsR[2] = nsR[1]; nsR[1] = nsR[0]; nsR[0] = (rand()/(double)RAND_MAX); currentDitherR = (nsR[0] * 0.061); currentDitherR -= (nsR[1] * 0.11); currentDitherR += (nsR[8] * 0.126); currentDitherR -= (nsR[7] * 0.23); currentDitherR += (nsR[2] * 0.25); currentDitherR -= (nsR[3] * 0.43); currentDitherR += (nsR[6] * 0.5); currentDitherR -= nsR[5]; currentDitherR += nsR[4]; //this sounds different from doing it in order of sample position //cumulative tiny errors seem to build up even at this buss depth //considerably more pronounced at 32 bit float. //Therefore we add the most significant components LAST. //trying to keep values on like exponents of the floating point value. inputSampleR += currentDitherR; inputSampleR = floor(inputSampleR); //done with R //DoublePaul dither break; case 6: currentDitherL = (rand()/(double)RAND_MAX); currentDitherR = (rand()/(double)RAND_MAX); inputSampleL += currentDitherL; inputSampleR += currentDitherR; inputSampleL -= nsL[4]; inputSampleR -= nsR[4]; inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); nsL[4] = nsL[3]; nsL[3] = nsL[2]; nsL[2] = nsL[1]; nsL[1] = currentDitherL; nsR[4] = nsR[3]; nsR[3] = nsR[2]; nsR[2] = nsR[1]; nsR[1] = currentDitherR; //Tape dither break; case 7: Position += 1; //Note- uses integer overflow as a 'mod' operator hotbinA = Position * Position; hotbinA = hotbinA % 170003; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 17011; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 1709; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 173; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 17; hotbinA *= 0.0635; if (flip) hotbinA = -hotbinA; inputSampleL += hotbinA; inputSampleR += hotbinA; inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); //Quadratic dither break; case 8: absSample = ((rand()/(double)RAND_MAX) - 0.5); nsL[0] += absSample; nsL[0] /= 2; absSample -= nsL[0]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[1] += absSample; nsL[1] /= 2; absSample -= nsL[1]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[2] += absSample; nsL[2] /= 2; absSample -= nsL[2]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[3] += absSample; nsL[3] /= 2; absSample -= nsL[3]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[4] += absSample; nsL[4] /= 2; absSample -= nsL[4]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[5] += absSample; nsL[5] /= 2; absSample -= nsL[5]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[6] += absSample; nsL[6] /= 2; absSample -= nsL[6]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[7] += absSample; nsL[7] /= 2; absSample -= nsL[7]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[8] += absSample; nsL[8] /= 2; absSample -= nsL[8]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[9] += absSample; nsL[9] /= 2; absSample -= nsL[9]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[10] += absSample; nsL[10] /= 2; absSample -= nsL[10]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[11] += absSample; nsL[11] /= 2; absSample -= nsL[11]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[12] += absSample; nsL[12] /= 2; absSample -= nsL[12]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[13] += absSample; nsL[13] /= 2; absSample -= nsL[13]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[14] += absSample; nsL[14] /= 2; absSample -= nsL[14]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[15] += absSample; nsL[15] /= 2; absSample -= nsL[15]; //install noise and then shape it absSample += inputSampleL; if (NSOddL > 0) NSOddL -= 0.97; if (NSOddL < 0) NSOddL += 0.97; NSOddL -= (NSOddL * NSOddL * NSOddL * 0.475); NSOddL += prevL; absSample += (NSOddL*0.475); prevL = floor(absSample) - inputSampleL; inputSampleL = floor(absSample); //TenNines dither L absSample = ((rand()/(double)RAND_MAX) - 0.5); nsR[0] += absSample; nsR[0] /= 2; absSample -= nsR[0]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[1] += absSample; nsR[1] /= 2; absSample -= nsR[1]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[2] += absSample; nsR[2] /= 2; absSample -= nsR[2]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[3] += absSample; nsR[3] /= 2; absSample -= nsR[3]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[4] += absSample; nsR[4] /= 2; absSample -= nsR[4]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[5] += absSample; nsR[5] /= 2; absSample -= nsR[5]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[6] += absSample; nsR[6] /= 2; absSample -= nsR[6]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[7] += absSample; nsR[7] /= 2; absSample -= nsR[7]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[8] += absSample; nsR[8] /= 2; absSample -= nsR[8]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[9] += absSample; nsR[9] /= 2; absSample -= nsR[9]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[10] += absSample; nsR[10] /= 2; absSample -= nsR[10]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[11] += absSample; nsR[11] /= 2; absSample -= nsR[11]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[12] += absSample; nsR[12] /= 2; absSample -= nsR[12]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[13] += absSample; nsR[13] /= 2; absSample -= nsR[13]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[14] += absSample; nsR[14] /= 2; absSample -= nsR[14]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[15] += absSample; nsR[15] /= 2; absSample -= nsR[15]; //install noise and then shape it absSample += inputSampleR; if (NSOddR > 0) NSOddR -= 0.97; if (NSOddR < 0) NSOddR += 0.97; NSOddR -= (NSOddR * NSOddR * NSOddR * 0.475); NSOddR += prevR; absSample += (NSOddR*0.475); prevR = floor(absSample) - inputSampleR; inputSampleR = floor(absSample); //TenNines dither R break; case 9: if (inputSampleL > 0) inputSampleL += 0.383; if (inputSampleL < 0) inputSampleL -= 0.383; if (inputSampleR > 0) inputSampleR += 0.383; if (inputSampleR < 0) inputSampleR -= 0.383; //adjusting to permit more information drug outta the noisefloor contingentRnd = (((rand()/(double)RAND_MAX)+(rand()/(double)RAND_MAX))-1.0) * randyConstant; //produce TPDF dist, scale contingentRnd -= contingentErrL*omegaConstant; //include err absSample = fabs(inputSampleL); contingentErrL = absSample - floor(absSample); //get next err contingent = contingentErrL * 2.0; //scale of quantization levels if (contingent > 1.0) contingent = ((-contingent+2.0)*omegaConstant) + expConstant; else contingent = (contingent * omegaConstant) + expConstant; //zero is next to a quantization level, one is exactly between them if (flip) contingentRnd = (contingentRnd * (1.0-contingent)) + contingent + 0.5; else contingentRnd = (contingentRnd * (1.0-contingent)) - contingent + 0.5; inputSampleL += (contingentRnd * contingent); //Contingent Dither inputSampleL = floor(inputSampleL); contingentRnd = (((rand()/(double)RAND_MAX)+(rand()/(double)RAND_MAX))-1.0) * randyConstant; //produce TPDF dist, scale contingentRnd -= contingentErrR*omegaConstant; //include err absSample = fabs(inputSampleR); contingentErrR = absSample - floor(absSample); //get next err contingent = contingentErrR * 2.0; //scale of quantization levels if (contingent > 1.0) contingent = ((-contingent+2.0)*omegaConstant) + expConstant; else contingent = (contingent * omegaConstant) + expConstant; //zero is next to a quantization level, one is exactly between them if (flip) contingentRnd = (contingentRnd * (1.0-contingent)) + contingent + 0.5; else contingentRnd = (contingentRnd * (1.0-contingent)) - contingent + 0.5; inputSampleR += (contingentRnd * contingent); //Contingent Dither inputSampleR = floor(inputSampleR); //note: this does not dither for values exactly the same as 16 bit values- //which forces the dither to gate at 0.0. It goes to digital black, //and does a teeny parallel-compression thing when almost at digital black. break; case 10: //this one is the original Naturalize if (inputSampleL > 0) inputSampleL += (0.3333333333); if (inputSampleL < 0) inputSampleL -= (0.3333333333); inputSampleL += (rand()/(double)RAND_MAX)*0.6666666666; if (inputSampleR > 0) inputSampleR += (0.3333333333); if (inputSampleR < 0) inputSampleR -= (0.3333333333); inputSampleR += (rand()/(double)RAND_MAX)*0.6666666666; //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; /* /* if (totalA = 0) */ */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R break; case 11: //this one is the Not Just Another Dither //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R break; case 12: //slew only outputSampleL = (inputSampleL - lastSampleL)*trim; outputSampleR = (inputSampleR - lastSampleR)*trim; lastSampleL = inputSampleL; lastSampleR = inputSampleR; if (outputSampleL > 1.0) outputSampleL = 1.0; if (outputSampleR > 1.0) outputSampleR = 1.0; if (outputSampleL < -1.0) outputSampleL = -1.0; if (outputSampleR < -1.0) outputSampleR = -1.0; inputSampleL = outputSampleL; inputSampleR = outputSampleR; break; case 13: //subs only gain = gaintarget; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; iirSampleAL = (iirSampleAL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleBL = (iirSampleBL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleCL = (iirSampleCL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleDL = (iirSampleDL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleEL = (iirSampleEL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleFL = (iirSampleFL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleGL = (iirSampleGL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleHL = (iirSampleHL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleIL = (iirSampleIL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleJL = (iirSampleJL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleKL = (iirSampleKL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleLL = (iirSampleLL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleML = (iirSampleML * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleML; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleNL = (iirSampleNL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleOL = (iirSampleOL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSamplePL = (iirSamplePL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleQL = (iirSampleQL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleRL = (iirSampleRL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleSL = (iirSampleSL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleTL = (iirSampleTL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleUL = (iirSampleUL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleVL = (iirSampleVL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleWL = (iirSampleWL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleXL = (iirSampleXL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleYL = (iirSampleYL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleZL = (iirSampleZL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; gain = gaintarget; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; iirSampleAR = (iirSampleAR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleBR = (iirSampleBR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleCR = (iirSampleCR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleDR = (iirSampleDR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleER = (iirSampleER * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleER; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleFR = (iirSampleFR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleGR = (iirSampleGR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleHR = (iirSampleHR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleIR = (iirSampleIR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleJR = (iirSampleJR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleKR = (iirSampleKR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleLR = (iirSampleLR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleMR = (iirSampleMR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleNR = (iirSampleNR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleOR = (iirSampleOR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSamplePR = (iirSamplePR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleQR = (iirSampleQR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleRR = (iirSampleRR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleSR = (iirSampleSR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleTR = (iirSampleTR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleUR = (iirSampleUR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleVR = (iirSampleVR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleWR = (iirSampleWR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleXR = (iirSampleXR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleYR = (iirSampleYR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleZR = (iirSampleZR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; break; case 14: //silhouette //begin L bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; silhouette = rand()/(double)RAND_MAX; silhouette -= 0.5; silhouette *= 2.0; silhouette *= fabs(inputSampleL); smoother = rand()/(double)RAND_MAX; smoother -= 0.5; smoother *= 2.0; smoother *= fabs(lastSampleL); lastSampleL = inputSampleL; silhouette += smoother; bridgerectifier = fabs(silhouette)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (silhouette > 0.0) silhouette = bridgerectifier; else silhouette = -bridgerectifier; inputSampleL = (silhouette + outSampleL) / 2.0; outSampleL = silhouette; //end L //begin R bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; silhouette = rand()/(double)RAND_MAX; silhouette -= 0.5; silhouette *= 2.0; silhouette *= fabs(inputSampleR); smoother = rand()/(double)RAND_MAX; smoother -= 0.5; smoother *= 2.0; smoother *= fabs(lastSampleR); lastSampleR = inputSampleR; silhouette += smoother; bridgerectifier = fabs(silhouette)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (silhouette > 0.0) silhouette = bridgerectifier; else silhouette = -bridgerectifier; inputSampleR = (silhouette + outSampleR) / 2.0; outSampleR = silhouette; //end R break; } flip = !flip; //several dithers use this if (highRes) {inputSampleL /= 256.0; inputSampleR /= 256.0;} //256 for 16/24 version if (dithering) {inputSampleL /= 32768.0; inputSampleR /= 32768.0;} if (dtype == 8) { noiseShapingL += inputSampleL - drySampleL; noiseShapingR += inputSampleR - drySampleR; } *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Ditherbox::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; int dtype = (int)(A * 24.999)+1; // +1 for Reaper bug workaround long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double iirAmount = 2250/44100.0; long double gaintarget = 1.42; long double gain; iirAmount /= overallscale; long double altAmount = 1.0 - iirAmount; long double outputSampleL; long double outputSampleR; long double silhouette; long double smoother; long double bridgerectifier; long double benfordize; int hotbinA; int hotbinB; long double totalA; long double totalB; long double contingentRnd; long double absSample; long double contingent; long double randyConstant = 1.61803398874989484820458683436563811772030917980576; long double omegaConstant = 0.56714329040978387299996866221035554975381578718651; long double expConstant = 0.06598803584531253707679018759684642493857704825279; long double trim = 2.302585092994045684017991; //natural logarithm of 10 bool highRes = false; bool dithering = true; if (dtype > 11){highRes = true; dtype -= 11;} if (dtype > 11){dithering = false; highRes = false;} //follow up by switching high res back off for the monitoring while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } double drySampleL = inputSampleL; double drySampleR = inputSampleR; if (dtype == 8) {inputSampleL -= noiseShapingL; inputSampleR -= noiseShapingR;} if (dithering) {inputSampleL *= 32768.0; inputSampleR *= 32768.0;} //denormalizing as way of controlling insane detail boosting if (highRes) {inputSampleL *= 256.0; inputSampleR *= 256.0;} //256 for 16/24 version switch (dtype) { case 1: inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); //truncate break; case 2: inputSampleL += (rand()/(double)RAND_MAX); inputSampleL -= 0.5; inputSampleL = floor(inputSampleL); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR -= 0.5; inputSampleR = floor(inputSampleR); //flat dither break; case 3: inputSampleL += (rand()/(double)RAND_MAX); inputSampleL += (rand()/(double)RAND_MAX); inputSampleL -= 1.0; inputSampleL = floor(inputSampleL); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR += (rand()/(double)RAND_MAX); inputSampleR -= 1.0; inputSampleR = floor(inputSampleR); //TPDF dither break; case 4: currentDitherL = (rand()/(double)RAND_MAX); inputSampleL += currentDitherL; inputSampleL -= lastSampleL; inputSampleL = floor(inputSampleL); lastSampleL = currentDitherL; currentDitherR = (rand()/(double)RAND_MAX); inputSampleR += currentDitherR; inputSampleR -= lastSampleR; inputSampleR = floor(inputSampleR); lastSampleR = currentDitherR; //Paul dither break; case 5: nsL[9] = nsL[8]; nsL[8] = nsL[7]; nsL[7] = nsL[6]; nsL[6] = nsL[5]; nsL[5] = nsL[4]; nsL[4] = nsL[3]; nsL[3] = nsL[2]; nsL[2] = nsL[1]; nsL[1] = nsL[0]; nsL[0] = (rand()/(double)RAND_MAX); currentDitherL = (nsL[0] * 0.061); currentDitherL -= (nsL[1] * 0.11); currentDitherL += (nsL[8] * 0.126); currentDitherL -= (nsL[7] * 0.23); currentDitherL += (nsL[2] * 0.25); currentDitherL -= (nsL[3] * 0.43); currentDitherL += (nsL[6] * 0.5); currentDitherL -= nsL[5]; currentDitherL += nsL[4]; //this sounds different from doing it in order of sample position //cumulative tiny errors seem to build up even at this buss depth //considerably more pronounced at 32 bit float. //Therefore we add the most significant components LAST. //trying to keep values on like exponents of the floating point value. inputSampleL += currentDitherL; inputSampleL = floor(inputSampleL); //done with L nsR[9] = nsR[8]; nsR[8] = nsR[7]; nsR[7] = nsR[6]; nsR[6] = nsR[5]; nsR[5] = nsR[4]; nsR[4] = nsR[3]; nsR[3] = nsR[2]; nsR[2] = nsR[1]; nsR[1] = nsR[0]; nsR[0] = (rand()/(double)RAND_MAX); currentDitherR = (nsR[0] * 0.061); currentDitherR -= (nsR[1] * 0.11); currentDitherR += (nsR[8] * 0.126); currentDitherR -= (nsR[7] * 0.23); currentDitherR += (nsR[2] * 0.25); currentDitherR -= (nsR[3] * 0.43); currentDitherR += (nsR[6] * 0.5); currentDitherR -= nsR[5]; currentDitherR += nsR[4]; //this sounds different from doing it in order of sample position //cumulative tiny errors seem to build up even at this buss depth //considerably more pronounced at 32 bit float. //Therefore we add the most significant components LAST. //trying to keep values on like exponents of the floating point value. inputSampleR += currentDitherR; inputSampleR = floor(inputSampleR); //done with R //DoublePaul dither break; case 6: currentDitherL = (rand()/(double)RAND_MAX); currentDitherR = (rand()/(double)RAND_MAX); inputSampleL += currentDitherL; inputSampleR += currentDitherR; inputSampleL -= nsL[4]; inputSampleR -= nsR[4]; inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); nsL[4] = nsL[3]; nsL[3] = nsL[2]; nsL[2] = nsL[1]; nsL[1] = currentDitherL; nsR[4] = nsR[3]; nsR[3] = nsR[2]; nsR[2] = nsR[1]; nsR[1] = currentDitherR; //Tape dither break; case 7: Position += 1; //Note- uses integer overflow as a 'mod' operator hotbinA = Position * Position; hotbinA = hotbinA % 170003; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 17011; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 1709; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 173; //% is C++ mod operator hotbinA *= hotbinA; hotbinA = hotbinA % 17; hotbinA *= 0.0635; if (flip) hotbinA = -hotbinA; inputSampleL += hotbinA; inputSampleR += hotbinA; inputSampleL = floor(inputSampleL); inputSampleR = floor(inputSampleR); //Quadratic dither break; case 8: absSample = ((rand()/(double)RAND_MAX) - 0.5); nsL[0] += absSample; nsL[0] /= 2; absSample -= nsL[0]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[1] += absSample; nsL[1] /= 2; absSample -= nsL[1]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[2] += absSample; nsL[2] /= 2; absSample -= nsL[2]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[3] += absSample; nsL[3] /= 2; absSample -= nsL[3]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[4] += absSample; nsL[4] /= 2; absSample -= nsL[4]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[5] += absSample; nsL[5] /= 2; absSample -= nsL[5]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[6] += absSample; nsL[6] /= 2; absSample -= nsL[6]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[7] += absSample; nsL[7] /= 2; absSample -= nsL[7]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[8] += absSample; nsL[8] /= 2; absSample -= nsL[8]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[9] += absSample; nsL[9] /= 2; absSample -= nsL[9]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[10] += absSample; nsL[10] /= 2; absSample -= nsL[10]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[11] += absSample; nsL[11] /= 2; absSample -= nsL[11]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[12] += absSample; nsL[12] /= 2; absSample -= nsL[12]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[13] += absSample; nsL[13] /= 2; absSample -= nsL[13]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[14] += absSample; nsL[14] /= 2; absSample -= nsL[14]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsL[15] += absSample; nsL[15] /= 2; absSample -= nsL[15]; //install noise and then shape it absSample += inputSampleL; if (NSOddL > 0) NSOddL -= 0.97; if (NSOddL < 0) NSOddL += 0.97; NSOddL -= (NSOddL * NSOddL * NSOddL * 0.475); NSOddL += prevL; absSample += (NSOddL*0.475); prevL = floor(absSample) - inputSampleL; inputSampleL = floor(absSample); //TenNines dither L absSample = ((rand()/(double)RAND_MAX) - 0.5); nsR[0] += absSample; nsR[0] /= 2; absSample -= nsR[0]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[1] += absSample; nsR[1] /= 2; absSample -= nsR[1]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[2] += absSample; nsR[2] /= 2; absSample -= nsR[2]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[3] += absSample; nsR[3] /= 2; absSample -= nsR[3]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[4] += absSample; nsR[4] /= 2; absSample -= nsR[4]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[5] += absSample; nsR[5] /= 2; absSample -= nsR[5]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[6] += absSample; nsR[6] /= 2; absSample -= nsR[6]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[7] += absSample; nsR[7] /= 2; absSample -= nsR[7]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[8] += absSample; nsR[8] /= 2; absSample -= nsR[8]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[9] += absSample; nsR[9] /= 2; absSample -= nsR[9]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[10] += absSample; nsR[10] /= 2; absSample -= nsR[10]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[11] += absSample; nsR[11] /= 2; absSample -= nsR[11]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[12] += absSample; nsR[12] /= 2; absSample -= nsR[12]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[13] += absSample; nsR[13] /= 2; absSample -= nsR[13]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[14] += absSample; nsR[14] /= 2; absSample -= nsR[14]; absSample += ((rand()/(double)RAND_MAX) - 0.5); nsR[15] += absSample; nsR[15] /= 2; absSample -= nsR[15]; //install noise and then shape it absSample += inputSampleR; if (NSOddR > 0) NSOddR -= 0.97; if (NSOddR < 0) NSOddR += 0.97; NSOddR -= (NSOddR * NSOddR * NSOddR * 0.475); NSOddR += prevR; absSample += (NSOddR*0.475); prevR = floor(absSample) - inputSampleR; inputSampleR = floor(absSample); //TenNines dither R break; case 9: if (inputSampleL > 0) inputSampleL += 0.383; if (inputSampleL < 0) inputSampleL -= 0.383; if (inputSampleR > 0) inputSampleR += 0.383; if (inputSampleR < 0) inputSampleR -= 0.383; //adjusting to permit more information drug outta the noisefloor contingentRnd = (((rand()/(double)RAND_MAX)+(rand()/(double)RAND_MAX))-1.0) * randyConstant; //produce TPDF dist, scale contingentRnd -= contingentErrL*omegaConstant; //include err absSample = fabs(inputSampleL); contingentErrL = absSample - floor(absSample); //get next err contingent = contingentErrL * 2.0; //scale of quantization levels if (contingent > 1.0) contingent = ((-contingent+2.0)*omegaConstant) + expConstant; else contingent = (contingent * omegaConstant) + expConstant; //zero is next to a quantization level, one is exactly between them if (flip) contingentRnd = (contingentRnd * (1.0-contingent)) + contingent + 0.5; else contingentRnd = (contingentRnd * (1.0-contingent)) - contingent + 0.5; inputSampleL += (contingentRnd * contingent); //Contingent Dither inputSampleL = floor(inputSampleL); contingentRnd = (((rand()/(double)RAND_MAX)+(rand()/(double)RAND_MAX))-1.0) * randyConstant; //produce TPDF dist, scale contingentRnd -= contingentErrR*omegaConstant; //include err absSample = fabs(inputSampleR); contingentErrR = absSample - floor(absSample); //get next err contingent = contingentErrR * 2.0; //scale of quantization levels if (contingent > 1.0) contingent = ((-contingent+2.0)*omegaConstant) + expConstant; else contingent = (contingent * omegaConstant) + expConstant; //zero is next to a quantization level, one is exactly between them if (flip) contingentRnd = (contingentRnd * (1.0-contingent)) + contingent + 0.5; else contingentRnd = (contingentRnd * (1.0-contingent)) - contingent + 0.5; inputSampleR += (contingentRnd * contingent); //Contingent Dither inputSampleR = floor(inputSampleR); //note: this does not dither for values exactly the same as 16 bit values- //which forces the dither to gate at 0.0. It goes to digital black, //and does a teeny parallel-compression thing when almost at digital black. break; case 10: //this one is the original Naturalize if (inputSampleL > 0) inputSampleL += (0.3333333333); if (inputSampleL < 0) inputSampleL -= (0.3333333333); inputSampleL += (rand()/(double)RAND_MAX)*0.6666666666; if (inputSampleR > 0) inputSampleR += (0.3333333333); if (inputSampleR < 0) inputSampleR -= (0.3333333333); inputSampleR += (rand()/(double)RAND_MAX)*0.6666666666; //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R break; case 11: //this one is the Not Just Another Dither //begin L benfordize = floor(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynL[hotbinA] += 1; totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]); totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]); totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleL); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynL[hotbinB] += 1; totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]); totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]); totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynL[hotbinA] += 1; inputSampleL = floor(inputSampleL); } else { bynL[hotbinB] += 1; inputSampleL = ceil(inputSampleL); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynL[1] + bynL[2] + bynL[3] + bynL[4] + bynL[5] + bynL[6] + bynL[7] + bynL[8] + bynL[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynL[1] /= totalA; bynL[2] /= totalA; bynL[3] /= totalA; bynL[4] /= totalA; bynL[5] /= totalA; bynL[6] /= totalA; bynL[7] /= totalA; bynL[8] /= totalA; bynL[9] /= totalA; bynL[10] /= 2; //catchall for garbage data //end L //begin R benfordize = floor(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinA = floor(benfordize); //hotbin becomes the Benford bin value for this number floored totalA = 0; if ((hotbinA > 0) && (hotbinA < 10)) { bynR[hotbinA] += 1; totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]); totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]); totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1; } else {hotbinA = 10;} //produce total number- smaller is closer to Benford real benfordize = ceil(inputSampleR); while (benfordize >= 1.0) {benfordize /= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} if (benfordize < 1.0) {benfordize *= 10;} hotbinB = floor(benfordize); //hotbin becomes the Benford bin value for this number ceiled totalB = 0; if ((hotbinB > 0) && (hotbinB < 10)) { bynR[hotbinB] += 1; totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]); totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]); totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1; } else {hotbinB = 10;} //produce total number- smaller is closer to Benford real if (totalA < totalB) { bynR[hotbinA] += 1; inputSampleR = floor(inputSampleR); } else { bynR[hotbinB] += 1; inputSampleR = ceil(inputSampleR); } //assign the relevant one to the delay line //and floor/ceil signal accordingly totalA = bynR[1] + bynR[2] + bynR[3] + bynR[4] + bynR[5] + bynR[6] + bynR[7] + bynR[8] + bynR[9]; totalA /= 1000; /* if (totalA = 0) */ totalA = 1; // spotted by Laserbat: this 'scaling back' code doesn't. It always divides by the fallback of 1. Old NJAD doesn't scale back the things we're comparing against. Kept to retain known behavior, use the one in StudioTan and Monitoring for a tuned-as-intended NJAD. bynR[1] /= totalA; bynR[2] /= totalA; bynR[3] /= totalA; bynR[4] /= totalA; bynR[5] /= totalA; bynR[6] /= totalA; bynR[7] /= totalA; bynR[8] /= totalA; bynR[9] /= totalA; bynR[10] /= 2; //catchall for garbage data //end R break; case 12: //slew only outputSampleL = (inputSampleL - lastSampleL)*trim; outputSampleR = (inputSampleR - lastSampleR)*trim; lastSampleL = inputSampleL; lastSampleR = inputSampleR; if (outputSampleL > 1.0) outputSampleL = 1.0; if (outputSampleR > 1.0) outputSampleR = 1.0; if (outputSampleL < -1.0) outputSampleL = -1.0; if (outputSampleR < -1.0) outputSampleR = -1.0; inputSampleL = outputSampleL; inputSampleR = outputSampleR; break; case 13: //subs only gain = gaintarget; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; iirSampleAL = (iirSampleAL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleBL = (iirSampleBL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleCL = (iirSampleCL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleDL = (iirSampleDL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleEL = (iirSampleEL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleFL = (iirSampleFL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleGL = (iirSampleGL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleHL = (iirSampleHL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleIL = (iirSampleIL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleJL = (iirSampleJL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleKL = (iirSampleKL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleLL = (iirSampleLL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleML = (iirSampleML * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleML; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleNL = (iirSampleNL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleOL = (iirSampleOL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSamplePL = (iirSamplePL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleQL = (iirSampleQL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleRL = (iirSampleRL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleSL = (iirSampleSL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleTL = (iirSampleTL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleUL = (iirSampleUL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleVL = (iirSampleVL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleWL = (iirSampleWL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleXL = (iirSampleXL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleYL = (iirSampleYL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL; inputSampleL *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; iirSampleZL = (iirSampleZL * altAmount) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; gain = gaintarget; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; iirSampleAR = (iirSampleAR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleBR = (iirSampleBR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleCR = (iirSampleCR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleDR = (iirSampleDR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleER = (iirSampleER * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleER; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleFR = (iirSampleFR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleGR = (iirSampleGR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleHR = (iirSampleHR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleIR = (iirSampleIR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleJR = (iirSampleJR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleKR = (iirSampleKR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleLR = (iirSampleLR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleMR = (iirSampleMR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleNR = (iirSampleNR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleOR = (iirSampleOR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSamplePR = (iirSamplePR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleQR = (iirSampleQR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleRR = (iirSampleRR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleSR = (iirSampleSR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleTR = (iirSampleTR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleUR = (iirSampleUR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleVR = (iirSampleVR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleWR = (iirSampleWR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleXR = (iirSampleXR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleYR = (iirSampleYR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR; inputSampleR *= gain; gain = ((gain-1)*0.75)+1; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; iirSampleZR = (iirSampleZR * altAmount) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; break; case 14: //silhouette //begin L bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; silhouette = rand()/(double)RAND_MAX; silhouette -= 0.5; silhouette *= 2.0; silhouette *= fabs(inputSampleL); smoother = rand()/(double)RAND_MAX; smoother -= 0.5; smoother *= 2.0; smoother *= fabs(lastSampleL); lastSampleL = inputSampleL; silhouette += smoother; bridgerectifier = fabs(silhouette)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (silhouette > 0.0) silhouette = bridgerectifier; else silhouette = -bridgerectifier; inputSampleL = (silhouette + outSampleL) / 2.0; outSampleL = silhouette; //end L //begin R bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = 1.0-cos(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; silhouette = rand()/(double)RAND_MAX; silhouette -= 0.5; silhouette *= 2.0; silhouette *= fabs(inputSampleR); smoother = rand()/(double)RAND_MAX; smoother -= 0.5; smoother *= 2.0; smoother *= fabs(lastSampleR); lastSampleR = inputSampleR; silhouette += smoother; bridgerectifier = fabs(silhouette)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (silhouette > 0.0) silhouette = bridgerectifier; else silhouette = -bridgerectifier; inputSampleR = (silhouette + outSampleR) / 2.0; outSampleR = silhouette; //end R break; } flip = !flip; //several dithers use this if (highRes) {inputSampleL /= 256.0; inputSampleR /= 256.0;} //256 for 16/24 version if (dithering) {inputSampleL /= 32768.0; inputSampleR /= 32768.0;} if (dtype == 8) { noiseShapingL += inputSampleL - drySampleL; noiseShapingR += inputSampleR - drySampleR; } *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }