/* ======================================== * Density - Density.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Density_H #include "Density.h" #endif void Density::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double density = (A*5.0)-1.0; double iirAmount = pow(B,3)/overallscale; double output = C; double wet = D; double dry = 1.0-wet; double bridgerectifier; double out = fabs(density); density = density * fabs(density); double count; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (fpFlip) { iirSampleAL = (iirSampleAL * (1.0 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirSampleAL; iirSampleAR = (iirSampleAR * (1.0 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirSampleAR; } else { iirSampleBL = (iirSampleBL * (1.0 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirSampleBL; iirSampleBR = (iirSampleBR * (1.0 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirSampleBR; } //highpass section fpFlip = !fpFlip; count = density; while (count > 1.0) { bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; count = count - 1.0; } //we have now accounted for any really high density settings. while (out > 1.0) out = out - 1.0; bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (density > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (density > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1.0-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1.0-out))-(bridgerectifier*out); //blend according to density control if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL * dry)+(inputSampleL * wet); inputSampleR = (drySampleR * dry)+(inputSampleR * wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Density::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double density = (A*5.0)-1.0; double iirAmount = pow(B,3)/overallscale; double output = C; double wet = D; double dry = 1.0-wet; double bridgerectifier; double out = fabs(density); density = density * fabs(density); double count; long double inputSampleL; long double inputSampleR; long double drySampleL; long double drySampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; if (fpFlip) { iirSampleAL = (iirSampleAL * (1.0 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirSampleAL; iirSampleAR = (iirSampleAR * (1.0 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirSampleAR; } else { iirSampleBL = (iirSampleBL * (1.0 - iirAmount)) + (inputSampleL * iirAmount); inputSampleL -= iirSampleBL; iirSampleBR = (iirSampleBR * (1.0 - iirAmount)) + (inputSampleR * iirAmount); inputSampleR -= iirSampleBR; } //highpass section fpFlip = !fpFlip; count = density; while (count > 1.0) { bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0.0) inputSampleL = bridgerectifier; else inputSampleL = -bridgerectifier; bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0.0) inputSampleR = bridgerectifier; else inputSampleR = -bridgerectifier; count = count - 1.0; } //we have now accounted for any really high density settings. while (out > 1.0) out = out - 1.0; bridgerectifier = fabs(inputSampleL)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (density > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out); else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out); //blend according to density control bridgerectifier = fabs(inputSampleR)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (density > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (inputSampleR > 0) inputSampleR = (inputSampleR*(1.0-out))+(bridgerectifier*out); else inputSampleR = (inputSampleR*(1.0-out))-(bridgerectifier*out); //blend according to density control if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (drySampleL * dry)+(inputSampleL * wet); inputSampleR = (drySampleR * dry)+(inputSampleR * wet); } //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }