/* ======================================== * Console5Buss - Console5Buss.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Console5Buss_H #include "Console5Buss.h" #endif void Console5Buss::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = A; double differenceL; double differenceR; double nearZeroL; double nearZeroR; double servoTrim = 0.0000001 / overallscale; double bassTrim = 0.005 / overallscale; long double inputSampleL; long double inputSampleR; if (settingchase != inputgain) { chasespeed *= 2.0; settingchase = inputgain; } if (chasespeed > 2500.0) chasespeed = 2500.0; if (gainchase < 0.0) gainchase = inputgain; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } chasespeed *= 0.9999; chasespeed -= 0.01; if (chasespeed < 350.0) chasespeed = 350.0; //we have our chase speed compensated for recent fader activity gainchase = (((gainchase*chasespeed)+inputgain)/(chasespeed+1.0)); //gainchase is chasing the target, as a simple multiply gain factor if (1.0 != gainchase) { inputSampleL *= gainchase; inputSampleR *= gainchase; } //done with trim control if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); //amplitude aspect if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect differenceL = lastSampleBussL - inputSampleL; differenceR = lastSampleBussR - inputSampleR; lastSampleBussL = inputSampleL; lastSampleBussR = inputSampleR; //derive slew part off direct sample measurement + from last time if (differenceL > 1.57079633) differenceL = 1.57079633; if (differenceL < -1.57079633) differenceL = -1.57079633; if (differenceR > 1.57079633) differenceR = 1.57079633; if (differenceR < -1.57079633) differenceR = -1.57079633; differenceL = lastFXBussL + sin(differenceL); differenceR = lastFXBussR + sin(differenceR); //we're about to use this twice and then not use difference again, so we'll reuse it //enhance slew is arcsin(): cutting it back is sin() iirCorrectL += inputSampleL - differenceL; iirCorrectR += inputSampleR - differenceR; inputSampleL = differenceL; inputSampleR = differenceR; //apply the slew to stored value: can develop DC offsets. //store the change we made so we can dial it back lastFXBussL = inputSampleL; lastFXBussR = inputSampleR; if (lastFXBussL > 1.0) lastFXBussL = 1.0; if (lastFXBussL < -1.0) lastFXBussL = -1.0; if (lastFXBussR > 1.0) lastFXBussR = 1.0; if (lastFXBussR < -1.0) lastFXBussR = -1.0; //build new signal off what was present in output last time nearZeroL = pow(fabs(fabs(lastFXBussL)-1.0), 2); nearZeroR = pow(fabs(fabs(lastFXBussR)-1.0), 2); //if the sample is very near zero this number is higher. if (iirCorrectL > 0) iirCorrectL -= servoTrim; if (iirCorrectL < 0) iirCorrectL += servoTrim; if (iirCorrectR > 0) iirCorrectR -= servoTrim; if (iirCorrectR < 0) iirCorrectR += servoTrim; //cut back the servo by which we're pulling back the DC lastFXBussL += (iirCorrectL * 0.0000005); lastFXBussR += (iirCorrectR * 0.0000005); //apply the servo to the stored value, pulling back the DC lastFXBussL *= (1.0 - (nearZeroL * bassTrim)); lastFXBussR *= (1.0 - (nearZeroR * bassTrim)); //this cuts back the DC offset directly, relative to how near zero we are //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Console5Buss::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = A; double differenceL; double differenceR; double nearZeroL; double nearZeroR; double servoTrim = 0.0000001 / overallscale; double bassTrim = 0.005 / overallscale; long double inputSampleL; long double inputSampleR; if (settingchase != inputgain) { chasespeed *= 2.0; settingchase = inputgain; } if (chasespeed > 2500.0) chasespeed = 2500.0; if (gainchase < 0.0) gainchase = inputgain; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } chasespeed *= 0.9999; chasespeed -= 0.01; if (chasespeed < 350.0) chasespeed = 350.0; //we have our chase speed compensated for recent fader activity gainchase = (((gainchase*chasespeed)+inputgain)/(chasespeed+1.0)); //gainchase is chasing the target, as a simple multiply gain factor if (1.0 != gainchase) { inputSampleL *= gainchase; inputSampleR *= gainchase; } //done with trim control if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL); //amplitude aspect if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR); //amplitude aspect differenceL = lastSampleBussL - inputSampleL; differenceR = lastSampleBussR - inputSampleR; lastSampleBussL = inputSampleL; lastSampleBussR = inputSampleR; //derive slew part off direct sample measurement + from last time if (differenceL > 1.57079633) differenceL = 1.57079633; if (differenceL < -1.57079633) differenceL = -1.57079633; if (differenceR > 1.57079633) differenceR = 1.57079633; if (differenceR < -1.57079633) differenceR = -1.57079633; differenceL = lastFXBussL + sin(differenceL); differenceR = lastFXBussR + sin(differenceR); //we're about to use this twice and then not use difference again, so we'll reuse it //enhance slew is arcsin(): cutting it back is sin() iirCorrectL += inputSampleL - differenceL; iirCorrectR += inputSampleR - differenceR; inputSampleL = differenceL; inputSampleR = differenceR; //apply the slew to stored value: can develop DC offsets. //store the change we made so we can dial it back lastFXBussL = inputSampleL; lastFXBussR = inputSampleR; if (lastFXBussL > 1.0) lastFXBussL = 1.0; if (lastFXBussL < -1.0) lastFXBussL = -1.0; if (lastFXBussR > 1.0) lastFXBussR = 1.0; if (lastFXBussR < -1.0) lastFXBussR = -1.0; //build new signal off what was present in output last time nearZeroL = pow(fabs(fabs(lastFXBussL)-1.0), 2); nearZeroR = pow(fabs(fabs(lastFXBussR)-1.0), 2); //if the sample is very near zero this number is higher. if (iirCorrectL > 0) iirCorrectL -= servoTrim; if (iirCorrectL < 0) iirCorrectL += servoTrim; if (iirCorrectR > 0) iirCorrectR -= servoTrim; if (iirCorrectR < 0) iirCorrectR += servoTrim; //cut back the servo by which we're pulling back the DC lastFXBussL += (iirCorrectL * 0.0000005); lastFXBussR += (iirCorrectR * 0.0000005); //apply the servo to the stored value, pulling back the DC lastFXBussL *= (1.0 - (nearZeroL * bassTrim)); lastFXBussR *= (1.0 - (nearZeroR * bassTrim)); //this cuts back the DC offset directly, relative to how near zero we are //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }