/* ======================================== * Compresaturator - Compresaturator.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Compresaturator_H #include "Compresaturator.h" #endif void Compresaturator::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double inputgain = pow(10.0,((A*24.0)-12.0)/20.0); double satComp = B*2.0; int widestRange = C*C*C*5000; if (widestRange < 50) widestRange = 50; satComp += (((double)widestRange/3000.0)*satComp); //set the max wideness of comp zone, minimum range boosted (too much?) double output = D; double wet = E; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (dCount < 1 || dCount > 5000) {dCount = 5000;} //begin drive L long double temp = inputSampleL; double variSpeed = 1.0 + ((padFactorL/lastWidthL)*satComp); if (variSpeed < 1.0) variSpeed = 1.0; double totalgain = inputgain / variSpeed; if (totalgain != 1.0) { inputSampleL *= totalgain; if (totalgain < 1.0) { temp *= totalgain; //no boosting beyond unity please } } long double bridgerectifier = fabs(inputSampleL); double overspill = 0; int targetWidth = widestRange; //we now have defaults and an absolute input value to work with if (bridgerectifier < 0.01) padFactorL *= 0.9999; //in silences we bring back padFactor if it got out of hand if (bridgerectifier > 1.57079633) { bridgerectifier = 1.57079633; targetWidth = 8; } //if our output's gone beyond saturating to distorting, we begin chasing the //buffer size smaller. Anytime we don't have that, we expand (smoothest sound, only adding to an increasingly subdivided buffer) bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) { inputSampleL = bridgerectifier; overspill = temp - bridgerectifier; } if (inputSampleL < 0) { inputSampleL = -bridgerectifier; overspill = (-temp) - bridgerectifier; } //drive section L //begin drive R temp = inputSampleR; variSpeed = 1.0 + ((padFactorR/lastWidthR)*satComp); if (variSpeed < 1.0) variSpeed = 1.0; totalgain = inputgain / variSpeed; if (totalgain != 1.0) { inputSampleR *= totalgain; if (totalgain < 1.0) { temp *= totalgain; //no boosting beyond unity please } } bridgerectifier = fabs(inputSampleR); overspill = 0; targetWidth = widestRange; //we now have defaults and an absolute input value to work with if (bridgerectifier < 0.01) padFactorR *= 0.9999; //in silences we bring back padFactor if it got out of hand if (bridgerectifier > 1.57079633) { bridgerectifier = 1.57079633; targetWidth = 8; } //if our output's gone beyond saturating to distorting, we begin chasing the //buffer size smaller. Anytime we don't have that, we expand (smoothest sound, only adding to an increasingly subdivided buffer) bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) { inputSampleR = bridgerectifier; overspill = temp - bridgerectifier; } if (inputSampleR < 0) { inputSampleR = -bridgerectifier; overspill = (-temp) - bridgerectifier; } //drive section R dL[dCount + 5000] = dL[dCount] = overspill * satComp; dR[dCount + 5000] = dR[dCount] = overspill * satComp; dCount--; //we now have a big buffer to draw from, which is always positive amount of overspill //begin pad L padFactorL += dL[dCount]; double randy = (rand()/(double)RAND_MAX); if ((targetWidth*randy) > lastWidthL) { //we are expanding the buffer so we don't remove this trailing sample lastWidthL += 1; } else { padFactorL -= dL[dCount+lastWidthL]; //zero change, or target is smaller and we are shrinking if (targetWidth < lastWidthL) { lastWidthL -= 1; if (lastWidthL < 2) lastWidthL = 2; //sanity check as randy can give us target zero padFactorL -= dL[dCount+lastWidthL]; } } //variable attack/release speed more rapid as comp intensity increases //implemented in a way where we're repeatedly not altering the buffer as it expands, which makes the comp artifacts smoother if (padFactorL < 0) padFactorL = 0; //end pad L //begin pad R padFactorR += dR[dCount]; randy = (rand()/(double)RAND_MAX); if ((targetWidth*randy) > lastWidthR) { //we are expanding the buffer so we don't remove this trailing sample lastWidthR += 1; } else { padFactorR -= dR[dCount+lastWidthR]; //zero change, or target is smaller and we are shrinking if (targetWidth < lastWidthR) { lastWidthR -= 1; if (lastWidthR < 2) lastWidthR = 2; //sanity check as randy can give us target zero padFactorR -= dR[dCount+lastWidthR]; } } //variable attack/release speed more rapid as comp intensity increases //implemented in a way where we're repeatedly not altering the buffer as it expands, which makes the comp artifacts smoother if (padFactorR < 0) padFactorR = 0; //end pad R if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-wet)); inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-wet)); } //begin 32 bit stereo floating point dither int expon; frexpf((float)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); frexpf((float)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); //end 32 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Compresaturator::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double inputgain = pow(10.0,((A*24.0)-12.0)/20.0); double satComp = B*2.0; int widestRange = C*C*5000; if (widestRange < 50) widestRange = 50; satComp += (((double)widestRange/3000.0)*satComp); //set the max wideness of comp zone, minimum range boosted (too much?) double output = D; double wet = E; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; if (dCount < 1 || dCount > 5000) {dCount = 5000;} //begin L long double temp = inputSampleL; double variSpeed = 1.0 + ((padFactorL/lastWidthL)*satComp); if (variSpeed < 1.0) variSpeed = 1.0; double totalgain = inputgain / variSpeed; if (totalgain != 1.0) { inputSampleL *= totalgain; if (totalgain < 1.0) { temp *= totalgain; //no boosting beyond unity please } } long double bridgerectifier = fabs(inputSampleL); double overspill = 0; int targetWidth = widestRange; //we now have defaults and an absolute input value to work with if (bridgerectifier < 0.01) padFactorL *= 0.9999; //in silences we bring back padFactor if it got out of hand if (bridgerectifier > 1.57079633) { bridgerectifier = 1.57079633; targetWidth = 8; } //if our output's gone beyond saturating to distorting, we begin chasing the //buffer size smaller. Anytime we don't have that, we expand (smoothest sound, only adding to an increasingly subdivided buffer) bridgerectifier = sin(bridgerectifier); if (inputSampleL > 0) { inputSampleL = bridgerectifier; overspill = temp - bridgerectifier; } if (inputSampleL < 0) { inputSampleL = -bridgerectifier; overspill = (-temp) - bridgerectifier; } //drive section dL[dCount + 5000] = dL[dCount] = overspill * satComp; //we now have a big buffer to draw from, which is always positive amount of overspill padFactorL += dL[dCount]; double randy = (rand()/(double)RAND_MAX); if ((targetWidth*randy) > lastWidthL) { //we are expanding the buffer so we don't remove this trailing sample lastWidthL += 1; } else { padFactorL -= dL[dCount+lastWidthL]; //zero change, or target is smaller and we are shrinking if (targetWidth < lastWidthL) { lastWidthL -= 1; if (lastWidthL < 2) lastWidthL = 2; //sanity check as randy can give us target zero padFactorL -= dL[dCount+lastWidthL]; } } //variable attack/release speed more rapid as comp intensity increases //implemented in a way where we're repeatedly not altering the buffer as it expands, which makes the comp artifacts smoother if (padFactorL < 0) padFactorL = 0; //end L //begin R temp = inputSampleR; variSpeed = 1.0 + ((padFactorR/lastWidthR)*satComp); if (variSpeed < 1.0) variSpeed = 1.0; totalgain = inputgain / variSpeed; if (totalgain != 1.0) { inputSampleR *= totalgain; if (totalgain < 1.0) { temp *= totalgain; //no boosting beyond unity please } } bridgerectifier = fabs(inputSampleR); overspill = 0; targetWidth = widestRange; //we now have defaults and an absolute input value to work with if (bridgerectifier < 0.01) padFactorR *= 0.9999; //in silences we bring back padFactor if it got out of hand if (bridgerectifier > 1.57079633) { bridgerectifier = 1.57079633; targetWidth = 8; } //if our output's gone beyond saturating to distorting, we begin chasing the //buffer size smaller. Anytime we don't have that, we expand (smoothest sound, only adding to an increasingly subdivided buffer) bridgerectifier = sin(bridgerectifier); if (inputSampleR > 0) { inputSampleR = bridgerectifier; overspill = temp - bridgerectifier; } if (inputSampleR < 0) { inputSampleR = -bridgerectifier; overspill = (-temp) - bridgerectifier; } //drive section dR[dCount + 5000] = dR[dCount] = overspill * satComp; //we now have a big buffer to draw from, which is always positive amount of overspill padFactorR += dR[dCount]; randy = (rand()/(double)RAND_MAX); if ((targetWidth*randy) > lastWidthR) { //we are expanding the buffer so we don't remove this trailing sample lastWidthR += 1; } else { padFactorR -= dR[dCount+lastWidthR]; //zero change, or target is smaller and we are shrinking if (targetWidth < lastWidthR) { lastWidthR -= 1; if (lastWidthR < 2) lastWidthR = 2; //sanity check as randy can give us target zero padFactorR -= dR[dCount+lastWidthR]; } } //variable attack/release speed more rapid as comp intensity increases //implemented in a way where we're repeatedly not altering the buffer as it expands, which makes the comp artifacts smoother if (padFactorR < 0) padFactorR = 0; //end R dCount--; if (output < 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet < 1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-wet)); inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-wet)); } //begin 64 bit stereo floating point dither int expon; frexp((double)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += static_cast(fpd) * 1.110223024625156e-44L * pow(2,expon+62); frexp((double)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += static_cast(fpd) * 1.110223024625156e-44L * pow(2,expon+62); //end 64 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }