/* ======================================== * ChorusEnsemble - ChorusEnsemble.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __ChorusEnsemble_H #include "ChorusEnsemble.h" #endif void ChorusEnsemble::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double speed = pow(A,3) * 0.001; speed *= overallscale; int loopLimit = (int)(totalsamples * 0.499); int count; double range = pow(B,3) * loopLimit * 0.12; double wet = C; double modulation = range*wet; double dry = 1.0 - wet; double tupi = 3.141592653589793238 * 2.0; double offset; double start[4]; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; //now we'll precalculate some stuff that needn't be in every sample start[0] = range; start[1] = range * 2; start[2] = range * 3; start[3] = range * 4; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; airFactorL = airPrevL - inputSampleL; if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;} else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;} airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001; airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001; airPrevL = inputSampleL; inputSampleL += (airFactorL*wet); //air, compensates for loss of highs in flanger's interpolation airFactorR = airPrevR - inputSampleR; if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;} else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;} airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001; airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001; airPrevR = inputSampleR; inputSampleR += (airFactorR*wet); //air, compensates for loss of highs in flanger's interpolation if (gcount < 1 || gcount > loopLimit) {gcount = loopLimit;} count = gcount; dL[count+loopLimit] = dL[count] = inputSampleL; dR[count+loopLimit] = dR[count] = inputSampleR; gcount--; //double buffer offset = start[0] + (modulation * sin(sweep)); count = gcount + (int)floor(offset); inputSampleL = dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR = dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[1] + (modulation * sin(sweep + 1.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[2] + (modulation * sin(sweep + 2.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[3] + (modulation * sin(sweep + 3.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us inputSampleL *= 0.125; //to get a comparable level inputSampleR *= 0.125; //to get a comparable level sweep += speed; if (sweep > tupi){sweep -= tupi;} //still scrolling through the samples, remember if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } fpFlip = !fpFlip; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void ChorusEnsemble::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double speed = pow(A,3) * 0.001; speed *= overallscale; int loopLimit = (int)(totalsamples * 0.499); int count; double range = pow(B,3) * loopLimit * 0.12; double wet = C; double modulation = range*wet; double dry = 1.0 - wet; double tupi = 3.141592653589793238 * 2.0; double offset; double start[4]; long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; //now we'll precalculate some stuff that needn't be in every sample start[0] = range; start[1] = range * 2; start[2] = range * 3; start[3] = range * 4; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; airFactorL = airPrevL - inputSampleL; if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;} else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;} airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001; airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001; airPrevL = inputSampleL; inputSampleL += (airFactorL*wet); //air, compensates for loss of highs in flanger's interpolation airFactorR = airPrevR - inputSampleR; if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;} else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;} airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001; airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001; airPrevR = inputSampleR; inputSampleR += (airFactorR*wet); //air, compensates for loss of highs in flanger's interpolation if (gcount < 1 || gcount > loopLimit) {gcount = loopLimit;} count = gcount; dL[count+loopLimit] = dL[count] = inputSampleL; dR[count+loopLimit] = dR[count] = inputSampleR; gcount--; //double buffer offset = start[0] + (modulation * sin(sweep)); count = gcount + (int)floor(offset); inputSampleL = dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR = dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[1] + (modulation * sin(sweep + 1.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[2] + (modulation * sin(sweep + 2.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us offset = start[3] + (modulation * sin(sweep + 3.0)); count = gcount + (int)floor(offset); inputSampleL += dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleL += dL[count+1]; //we can assume always using this in one way or another? inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us inputSampleR += dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0 inputSampleR += dR[count+1]; //we can assume always using this in one way or another? inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0 inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us inputSampleL *= 0.125; //to get a comparable level inputSampleR *= 0.125; //to get a comparable level sweep += speed; if (sweep > tupi){sweep -= tupi;} //still scrolling through the samples, remember if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } fpFlip = !fpFlip; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }