/* ======================================== * ButterComp2 - ButterComp2.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __ButterComp2_H #include "ButterComp2.h" #endif void ButterComp2::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = pow(10.0,(A*14.0)/20.0); double compfactor = 0.012 * (A / 135.0); double output = B * 2.0; double wet = C; double dry = 1.0 - wet; double outputgain = inputgain; outputgain -= 1.0; outputgain /= 1.5; outputgain += 1.0; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aButterComp2. We want a 'air' hiss double drySampleL = inputSampleL; double drySampleR = inputSampleR; inputSampleL *= inputgain; inputSampleR *= inputgain; long double divisor = compfactor / (1.0+fabs(lastOutputL)); //this is slowing compressor recovery while output waveforms were high divisor /= overallscale; long double remainder = divisor; divisor = 1.0 - divisor; //recalculate divisor every sample long double inputposL = inputSampleL + 1.0; if (inputposL < 0.0) inputposL = 0.0; long double outputposL = inputposL / 2.0; if (outputposL > 1.0) outputposL = 1.0; inputposL *= inputposL; targetposL *= divisor; targetposL += (inputposL * remainder); long double calcposL = pow((1.0/targetposL),2); long double inputnegL = (-inputSampleL) + 1.0; if (inputnegL < 0.0) inputnegL = 0.0; long double outputnegL = inputnegL / 2.0; if (outputnegL > 1.0) outputnegL = 1.0; inputnegL *= inputnegL; targetnegL *= divisor; targetnegL += (inputnegL * remainder); long double calcnegL = pow((1.0/targetnegL),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleL > 0) { //working on pos if (flip) { controlAposL *= divisor; controlAposL += (calcposL*remainder); } else { controlBposL *= divisor; controlBposL += (calcposL*remainder); } } else { //working on neg if (flip) { controlAnegL *= divisor; controlAnegL += (calcnegL*remainder); } else { controlBnegL *= divisor; controlBnegL += (calcnegL*remainder); } } //this causes each of the four to update only when active and in the correct 'flip' divisor = compfactor / (1.0+fabs(lastOutputR)); //this is slowing compressor recovery while output waveforms were high divisor /= overallscale; remainder = divisor; divisor = 1.0 - divisor; //recalculate divisor every sample long double inputposR = inputSampleR + 1.0; if (inputposR < 0.0) inputposR = 0.0; long double outputposR = inputposR / 2.0; if (outputposR > 1.0) outputposR = 1.0; inputposR *= inputposR; targetposR *= divisor; targetposR += (inputposR * remainder); long double calcposR = pow((1.0/targetposR),2); long double inputnegR = (-inputSampleR) + 1.0; if (inputnegR < 0.0) inputnegR = 0.0; long double outputnegR = inputnegR / 2.0; if (outputnegR > 1.0) outputnegR = 1.0; inputnegR *= inputnegR; targetnegR *= divisor; targetnegR += (inputnegR * remainder); long double calcnegR = pow((1.0/targetnegR),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleR > 0) { //working on pos if (flip) { controlAposR *= divisor; controlAposR += (calcposR*remainder); } else { controlBposR *= divisor; controlBposR += (calcposR*remainder); } } else { //working on neg if (flip) { controlAnegR *= divisor; controlAnegR += (calcnegR*remainder); } else { controlBnegR *= divisor; controlBnegR += (calcnegR*remainder); } } //this causes each of the four to update only when active and in the correct 'flip' long double totalmultiplierL; long double totalmultiplierR; if (flip) { totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL); totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR); } else { totalmultiplierL = (controlBposL * outputposL) + (controlBnegL * outputnegL); totalmultiplierR = (controlBposR * outputposR) + (controlBnegR * outputnegR); } //this combines the sides according to flip, blending relative to the input value inputSampleL *= totalmultiplierL; inputSampleL /= outputgain; inputSampleR *= totalmultiplierR; inputSampleR /= outputgain; if (output != 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } lastOutputL = inputSampleL; lastOutputR = inputSampleR; //we will make this factor respond to use of dry/wet flip = !flip; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void ButterComp2::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputgain = pow(10.0,(A*14.0)/20.0); double compfactor = 0.012 * (A / 135.0); double output = B * 2.0; double wet = C; double dry = 1.0 - wet; double outputgain = inputgain; outputgain -= 1.0; outputgain /= 1.5; outputgain += 1.0; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it aButterComp2. We want a 'air' hiss double drySampleL = inputSampleL; double drySampleR = inputSampleR; inputSampleL *= inputgain; inputSampleR *= inputgain; long double divisor = compfactor / (1.0+fabs(lastOutputL)); //this is slowing compressor recovery while output waveforms were high divisor /= overallscale; long double remainder = divisor; divisor = 1.0 - divisor; //recalculate divisor every sample long double inputposL = inputSampleL + 1.0; if (inputposL < 0.0) inputposL = 0.0; long double outputposL = inputposL / 2.0; if (outputposL > 1.0) outputposL = 1.0; inputposL *= inputposL; targetposL *= divisor; targetposL += (inputposL * remainder); long double calcposL = pow((1.0/targetposL),2); long double inputnegL = (-inputSampleL) + 1.0; if (inputnegL < 0.0) inputnegL = 0.0; long double outputnegL = inputnegL / 2.0; if (outputnegL > 1.0) outputnegL = 1.0; inputnegL *= inputnegL; targetnegL *= divisor; targetnegL += (inputnegL * remainder); long double calcnegL = pow((1.0/targetnegL),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleL > 0) { //working on pos if (flip) { controlAposL *= divisor; controlAposL += (calcposL*remainder); } else { controlBposL *= divisor; controlBposL += (calcposL*remainder); } } else { //working on neg if (flip) { controlAnegL *= divisor; controlAnegL += (calcnegL*remainder); } else { controlBnegL *= divisor; controlBnegL += (calcnegL*remainder); } } //this causes each of the four to update only when active and in the correct 'flip' divisor = compfactor / (1.0+fabs(lastOutputR)); //this is slowing compressor recovery while output waveforms were high divisor /= overallscale; remainder = divisor; divisor = 1.0 - divisor; //recalculate divisor every sample long double inputposR = inputSampleR + 1.0; if (inputposR < 0.0) inputposR = 0.0; long double outputposR = inputposR / 2.0; if (outputposR > 1.0) outputposR = 1.0; inputposR *= inputposR; targetposR *= divisor; targetposR += (inputposR * remainder); long double calcposR = pow((1.0/targetposR),2); long double inputnegR = (-inputSampleR) + 1.0; if (inputnegR < 0.0) inputnegR = 0.0; long double outputnegR = inputnegR / 2.0; if (outputnegR > 1.0) outputnegR = 1.0; inputnegR *= inputnegR; targetnegR *= divisor; targetnegR += (inputnegR * remainder); long double calcnegR = pow((1.0/targetnegR),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleR > 0) { //working on pos if (flip) { controlAposR *= divisor; controlAposR += (calcposR*remainder); } else { controlBposR *= divisor; controlBposR += (calcposR*remainder); } } else { //working on neg if (flip) { controlAnegR *= divisor; controlAnegR += (calcnegR*remainder); } else { controlBnegR *= divisor; controlBnegR += (calcnegR*remainder); } } //this causes each of the four to update only when active and in the correct 'flip' long double totalmultiplierL; long double totalmultiplierR; if (flip) { totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL); totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR); } else { totalmultiplierL = (controlBposL * outputposL) + (controlBnegL * outputnegL); totalmultiplierR = (controlBposR * outputposR) + (controlBnegR * outputnegR); } //this combines the sides according to flip, blending relative to the input value inputSampleL *= totalmultiplierL; inputSampleL /= outputgain; inputSampleR *= totalmultiplierR; inputSampleR /= outputgain; if (output != 1.0) { inputSampleL *= output; inputSampleR *= output; } if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } lastOutputL = inputSampleL; lastOutputR = inputSampleR; //we will make this factor respond to use of dry/wet flip = !flip; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }