/* ======================================== * ButterComp - ButterComp.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __ButterComp_H #include "ButterComp.h" #endif void ButterComp::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputposL; double inputnegL; double calcposL; double calcnegL; double outputposL; double outputnegL; long double totalmultiplierL; long double inputSampleL; double drySampleL; double inputposR; double inputnegR; double calcposR; double calcnegR; double outputposR; double outputnegR; long double totalmultiplierR; long double inputSampleR; double drySampleR; double inputgain = pow(10.0,(A*14.0)/20.0); double wet = B; double dry = 1.0 - wet; double outputgain = inputgain; outputgain -= 1.0; outputgain /= 1.5; outputgain += 1.0; double divisor = 0.012 * (A / 135.0); divisor /= overallscale; double remainder = divisor; divisor = 1.0 - divisor; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL *= inputgain; inputSampleR *= inputgain; inputposL = inputSampleL + 1.0; if (inputposL < 0.0) inputposL = 0.0; outputposL = inputposL / 2.0; if (outputposL > 1.0) outputposL = 1.0; inputposL *= inputposL; targetposL *= divisor; targetposL += (inputposL * remainder); calcposL = pow((1.0/targetposL),2); inputnegL = (-inputSampleL) + 1.0; if (inputnegL < 0.0) inputnegL = 0.0; outputnegL = inputnegL / 2.0; if (outputnegL > 1.0) outputnegL = 1.0; inputnegL *= inputnegL; targetnegL *= divisor; targetnegL += (inputnegL * remainder); calcnegL = pow((1.0/targetnegL),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 inputposR = inputSampleR + 1.0; if (inputposR < 0.0) inputposR = 0.0; outputposR = inputposR / 2.0; if (outputposR > 1.0) outputposR = 1.0; inputposR *= inputposR; targetposR *= divisor; targetposR += (inputposR * remainder); calcposR = pow((1.0/targetposR),2); inputnegR = (-inputSampleR) + 1.0; if (inputnegR < 0.0) inputnegR = 0.0; outputnegR = inputnegR / 2.0; if (outputnegR > 1.0) outputnegR = 1.0; inputnegR *= inputnegR; targetnegR *= divisor; targetnegR += (inputnegR * remainder); calcnegR = pow((1.0/targetnegR),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleL > 0) { //working on pos controlAposL *= divisor; controlAposL += (calcposL*remainder); } else { //working on neg controlAnegL *= divisor; controlAnegL += (calcnegL*remainder); } //this causes each of the four to update only when active and in the correct 'flip' if (inputSampleR > 0) { //working on pos controlAposR *= divisor; controlAposR += (calcposR*remainder); } else { //working on neg controlAnegR *= divisor; controlAnegR += (calcnegR*remainder); } //this causes each of the four to update only when active and in the correct 'flip' totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL); totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR); //this combines the sides according to flip, blending relative to the input value inputSampleL *= totalmultiplierL; inputSampleL /= outputgain; inputSampleR *= totalmultiplierR; inputSampleR /= outputgain; if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void ButterComp::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double inputposL; double inputnegL; double calcposL; double calcnegL; double outputposL; double outputnegL; long double totalmultiplierL; long double inputSampleL; double drySampleL; double inputposR; double inputnegR; double calcposR; double calcnegR; double outputposR; double outputnegR; long double totalmultiplierR; long double inputSampleR; double drySampleR; double inputgain = pow(10.0,(A*14.0)/20.0); double wet = B; double dry = 1.0 - wet; double outputgain = inputgain; outputgain -= 1.0; outputgain /= 1.5; outputgain += 1.0; double divisor = 0.012 * (A / 135.0); divisor /= overallscale; double remainder = divisor; divisor = 1.0 - divisor; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; inputSampleL *= inputgain; inputSampleR *= inputgain; inputposL = inputSampleL + 1.0; if (inputposL < 0.0) inputposL = 0.0; outputposL = inputposL / 2.0; if (outputposL > 1.0) outputposL = 1.0; inputposL *= inputposL; targetposL *= divisor; targetposL += (inputposL * remainder); calcposL = pow((1.0/targetposL),2); inputnegL = (-inputSampleL) + 1.0; if (inputnegL < 0.0) inputnegL = 0.0; outputnegL = inputnegL / 2.0; if (outputnegL > 1.0) outputnegL = 1.0; inputnegL *= inputnegL; targetnegL *= divisor; targetnegL += (inputnegL * remainder); calcnegL = pow((1.0/targetnegL),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 inputposR = inputSampleR + 1.0; if (inputposR < 0.0) inputposR = 0.0; outputposR = inputposR / 2.0; if (outputposR > 1.0) outputposR = 1.0; inputposR *= inputposR; targetposR *= divisor; targetposR += (inputposR * remainder); calcposR = pow((1.0/targetposR),2); inputnegR = (-inputSampleR) + 1.0; if (inputnegR < 0.0) inputnegR = 0.0; outputnegR = inputnegR / 2.0; if (outputnegR > 1.0) outputnegR = 1.0; inputnegR *= inputnegR; targetnegR *= divisor; targetnegR += (inputnegR * remainder); calcnegR = pow((1.0/targetnegR),2); //now we have mirrored targets for comp //outputpos and outputneg go from 0 to 1 if (inputSampleL > 0) { //working on pos controlAposL *= divisor; controlAposL += (calcposL*remainder); } else { //working on neg controlAnegL *= divisor; controlAnegL += (calcnegL*remainder); } //this causes each of the four to update only when active and in the correct 'flip' if (inputSampleR > 0) { //working on pos controlAposR *= divisor; controlAposR += (calcposR*remainder); } else { //working on neg controlAnegR *= divisor; controlAnegR += (calcnegR*remainder); } //this causes each of the four to update only when active and in the correct 'flip' totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL); totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR); //this combines the sides according to flip, blending relative to the input value inputSampleL *= totalmultiplierL; inputSampleL /= outputgain; inputSampleR *= totalmultiplierR; inputSampleR /= outputgain; if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }