/* ======================================== * BrassRider - BrassRider.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __BrassRider_H #include "BrassRider.h" #endif void BrassRider::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double limitOut = A*16; int offsetA = 13500; int offsetB = 16700; double wet = B; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; inputSampleL *= limitOut; highIIRL = (highIIRL*0.5); highIIRL += (inputSampleL*0.5); inputSampleL -= highIIRL; highIIR2L = (highIIR2L*0.5); highIIR2L += (inputSampleL*0.5); inputSampleL -= highIIR2L; long double slewSampleL = fabs(inputSampleL - lastSampleL); lastSampleL = inputSampleL; slewSampleL /= fabs(inputSampleL * lastSampleL)+0.2; slewIIRL = (slewIIRL*0.5); slewIIRL += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIRL); slewIIR2L = (slewIIR2L*0.5); slewIIR2L += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIR2L); long double bridgerectifier = slewSampleL; //there's the left channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); double ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleR *= limitOut; highIIRR = (highIIRR*0.5); highIIRR += (inputSampleR*0.5); inputSampleR -= highIIRR; highIIR2R = (highIIR2R*0.5); highIIR2R += (inputSampleR*0.5); inputSampleR -= highIIR2R; long double slewSampleR = fabs(inputSampleR - lastSampleR); lastSampleR = inputSampleR; slewSampleR /= fabs(inputSampleR * lastSampleR)+0.2; slewIIRR = (slewIIRR*0.5); slewIIRR += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIRR); slewIIR2R = (slewIIR2R*0.5); slewIIR2R += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIR2R); bridgerectifier = slewSampleR; //there's the right channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleL = (drySampleL * (1.0-wet)) + (drySampleL * clamp * wet * 16.0); inputSampleR = (drySampleR * (1.0-wet)) + (drySampleR * clamp * wet * 16.0); //begin 32 bit stereo floating point dither int expon; frexpf((float)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); frexpf((float)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void BrassRider::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double limitOut = A*16; int offsetA = 13500; int offsetB = 16700; double wet = B; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; inputSampleL *= limitOut; highIIRL = (highIIRL*0.5); highIIRL += (inputSampleL*0.5); inputSampleL -= highIIRL; highIIR2L = (highIIR2L*0.5); highIIR2L += (inputSampleL*0.5); inputSampleL -= highIIR2L; long double slewSampleL = fabs(inputSampleL - lastSampleL); lastSampleL = inputSampleL; slewSampleL /= fabs(inputSampleL * lastSampleL)+0.2; slewIIRL = (slewIIRL*0.5); slewIIRL += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIRL); slewIIR2L = (slewIIR2L*0.5); slewIIR2L += (slewSampleL*0.5); slewSampleL = fabs(slewSampleL - slewIIR2L); long double bridgerectifier = slewSampleL; //there's the left channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); double ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleR *= limitOut; highIIRR = (highIIRR*0.5); highIIRR += (inputSampleR*0.5); inputSampleR -= highIIRR; highIIR2R = (highIIR2R*0.5); highIIR2R += (inputSampleR*0.5); inputSampleR -= highIIR2R; long double slewSampleR = fabs(inputSampleR - lastSampleR); lastSampleR = inputSampleR; slewSampleR /= fabs(inputSampleR * lastSampleR)+0.2; slewIIRR = (slewIIRR*0.5); slewIIRR += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIRR); slewIIR2R = (slewIIR2R*0.5); slewIIR2R += (slewSampleR*0.5); slewSampleR = fabs(slewSampleR - slewIIR2R); bridgerectifier = slewSampleR; //there's the right channel, now to feed it to overall clamp if (bridgerectifier > 3.1415) bridgerectifier = 0.0; bridgerectifier = sin(bridgerectifier); if (gcount < 0 || gcount > 40000) {gcount = 40000;} d[gcount+40000] = d[gcount] = bridgerectifier; control += (d[gcount] / (offsetA+1)); control -= (d[gcount+offsetA] / offsetA); ramp = (control*control) * 16.0; e[gcount+40000] = e[gcount] = ramp; clamp += (e[gcount] / (offsetB+1)); clamp -= (e[gcount+offsetB] / offsetB); if (clamp > wet*8) clamp = wet*8; gcount--; inputSampleL = (drySampleL * (1.0-wet)) + (drySampleL * clamp * wet * 16.0); inputSampleR = (drySampleR * (1.0-wet)) + (drySampleR * clamp * wet * 16.0); //begin 64 bit stereo floating point dither int expon; frexp((double)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); frexp((double)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); //end 64 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }