/* ======================================== * BassKit - BassKit.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __BassKit_H #include "BassKit.h" #endif void BassKit::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double ataLowpass; double randy; double invrandy; double HeadBump = 0.0; double BassGain = A * 0.1; double HeadBumpFreq = ((B*0.1)+0.02)/overallscale; double iirAmount = HeadBumpFreq/44.1; double BassOutGain = ((C*2.0)-1.0)*fabs(((C*2.0)-1.0)); double SubBump = 0.0; double SubOutGain = ((D*2.0)-1.0)*fabs(((D*2.0)-1.0))*4.0; double clamp = 0.0; double fuzz = 0.111; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss ataLowpass = (inputSampleL + inputSampleR) / 2.0; iirDriveSampleA = (iirDriveSampleA * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleA; iirDriveSampleB = (iirDriveSampleB * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleB; oscGate += fabs(ataLowpass * 10.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (ataLowpass > 0) {if (WasNegative){SubOctave = !SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump -= iirSampleY; iirDriveSampleC = (iirDriveSampleC * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleC; iirDriveSampleD = (iirDriveSampleD * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleD; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += SubBump;// * BassGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * HeadBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += SubBump;// * BassGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * HeadBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += SubBump;// * BassGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * HeadBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirSampleZ; iirDriveSampleE = (iirDriveSampleE * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleE; iirDriveSampleF = (iirDriveSampleF * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleF; inputSampleL += (HeadBump * BassOutGain); inputSampleL += (SubBump * SubOutGain); inputSampleR += (HeadBump * BassOutGain); inputSampleR += (SubBump * SubOutGain); flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void BassKit::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); double ataLowpass; double randy; double invrandy; double HeadBump = 0.0; double BassGain = A * 0.1; double HeadBumpFreq = ((B*0.1)+0.02)/overallscale; double iirAmount = HeadBumpFreq/44.1; double BassOutGain = ((C*2.0)-1.0)*fabs(((C*2.0)-1.0)); double SubBump = 0.0; double SubOutGain = ((D*2.0)-1.0)*fabs(((D*2.0)-1.0))*4.0; double clamp = 0.0; double fuzz = 0.111; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss ataLowpass = (inputSampleL + inputSampleR) / 2.0; iirDriveSampleA = (iirDriveSampleA * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleA; iirDriveSampleB = (iirDriveSampleB * (1.0 - HeadBumpFreq)) + (ataLowpass * HeadBumpFreq); ataLowpass = iirDriveSampleB; oscGate += fabs(ataLowpass * 10.0); oscGate -= 0.001; if (oscGate > 1.0) oscGate = 1.0; if (oscGate < 0) oscGate = 0; //got a value that only goes down low when there's silence or near silence on input clamp = 1.0-oscGate; clamp *= 0.00001; //set up the thing to choke off oscillations- belt and suspenders affair if (ataLowpass > 0) {if (WasNegative){SubOctave = !SubOctave;} WasNegative = false;} else {WasNegative = true;} //set up polarities for sub-bass version randy = (rand()/(double)RAND_MAX)*fuzz; //0 to 1 the noise, may not be needed invrandy = (1.0-randy); randy /= 2.0; //set up the noise iirSampleA = (iirSampleA * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleA; iirSampleB = (iirSampleB * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleB; iirSampleC = (iirSampleC * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleC; iirSampleD = (iirSampleD * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleD; iirSampleE = (iirSampleE * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleE; iirSampleF = (iirSampleF * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleF; iirSampleG = (iirSampleG * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleG; iirSampleH = (iirSampleH * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleH; iirSampleI = (iirSampleI * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleI; iirSampleJ = (iirSampleJ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleJ; iirSampleK = (iirSampleK * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleK; iirSampleL = (iirSampleL * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleL; iirSampleM = (iirSampleM * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleM; iirSampleN = (iirSampleN * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleN; iirSampleO = (iirSampleO * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleO; iirSampleP = (iirSampleP * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleP; iirSampleQ = (iirSampleQ * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleQ; iirSampleR = (iirSampleR * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleR; iirSampleS = (iirSampleS * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleS; iirSampleT = (iirSampleT * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleT; iirSampleU = (iirSampleU * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleU; iirSampleV = (iirSampleV * (1.0 - iirAmount)) + (ataLowpass * iirAmount); ataLowpass -= iirSampleV; switch (bflip) { case 1: iirHeadBumpA += (ataLowpass * BassGain); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpA > 0) iirHeadBumpA -= clamp; if (iirHeadBumpA < 0) iirHeadBumpA += clamp; HeadBump = iirHeadBumpA; break; case 2: iirHeadBumpB += (ataLowpass * BassGain); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); if (iirHeadBumpB > 0) iirHeadBumpB -= clamp; if (iirHeadBumpB < 0) iirHeadBumpB += clamp; HeadBump = iirHeadBumpB; break; case 3: iirHeadBumpC += (ataLowpass * BassGain); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); if (iirHeadBumpC > 0) iirHeadBumpC -= clamp; if (iirHeadBumpC < 0) iirHeadBumpC += clamp; HeadBump = iirHeadBumpC; break; } iirSampleW = (iirSampleW * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleW; iirSampleX = (iirSampleX * (1.0 - iirAmount)) + (HeadBump * iirAmount); HeadBump -= iirSampleX; SubBump = HeadBump; iirSampleY = (iirSampleY * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump -= iirSampleY; iirDriveSampleC = (iirDriveSampleC * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleC; iirDriveSampleD = (iirDriveSampleD * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirDriveSampleD; SubBump = fabs(SubBump); if (SubOctave == false) {SubBump = -SubBump;} switch (bflip) { case 1: iirSubBumpA += SubBump;// * BassGain); iirSubBumpA -= (iirSubBumpA * iirSubBumpA * iirSubBumpA * HeadBumpFreq); iirSubBumpA = (invrandy * iirSubBumpA) + (randy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpA > 0) iirSubBumpA -= clamp; if (iirSubBumpA < 0) iirSubBumpA += clamp; SubBump = iirSubBumpA; break; case 2: iirSubBumpB += SubBump;// * BassGain); iirSubBumpB -= (iirSubBumpB * iirSubBumpB * iirSubBumpB * HeadBumpFreq); iirSubBumpB = (randy * iirSubBumpA) + (invrandy * iirSubBumpB) + (randy * iirSubBumpC); if (iirSubBumpB > 0) iirSubBumpB -= clamp; if (iirSubBumpB < 0) iirSubBumpB += clamp; SubBump = iirSubBumpB; break; case 3: iirSubBumpC += SubBump;// * BassGain); iirSubBumpC -= (iirSubBumpC * iirSubBumpC * iirSubBumpC * HeadBumpFreq); iirSubBumpC = (randy * iirSubBumpA) + (randy * iirSubBumpB) + (invrandy * iirSubBumpC); if (iirSubBumpC > 0) iirSubBumpC -= clamp; if (iirSubBumpC < 0) iirSubBumpC += clamp; SubBump = iirSubBumpC; break; } iirSampleZ = (iirSampleZ * (1.0 - HeadBumpFreq)) + (SubBump * HeadBumpFreq); SubBump = iirSampleZ; iirDriveSampleE = (iirDriveSampleE * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleE; iirDriveSampleF = (iirDriveSampleF * (1.0 - iirAmount)) + (SubBump * iirAmount); SubBump = iirDriveSampleF; inputSampleL += (HeadBump * BassOutGain); inputSampleL += (SubBump * SubOutGain); inputSampleR += (HeadBump * BassOutGain); inputSampleR += (SubBump * SubOutGain); flip = !flip; bflip++; if (bflip < 1 || bflip > 3) bflip = 1; //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }