/* ======================================== * Aura - Aura.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Aura_H #include "Aura.h" #endif void Aura::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double correctionL; double correctionR; double accumulatorSampleL; double accumulatorSampleR; double velocityL; double velocityR; double trim = A; double wet = B; double dry = 1.0 - wet; double overallscale = trim * 10.0; double gain = overallscale + (pow(wet,3) * 0.187859642462067); trim *= (1.0 - (pow(wet,3) * 0.187859642462067)); long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; if (gain < 1.0) gain = 1.0; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} if (gain > 1.0) {f[10] = 1.0; gain -= 1.0;} else {f[10] = gain; gain = 0.0;} if (gain > 1.0) {f[11] = 1.0; gain -= 1.0;} else {f[11] = gain; gain = 0.0;} if (gain > 1.0) {f[12] = 1.0; gain -= 1.0;} else {f[12] = gain; gain = 0.0;} if (gain > 1.0) {f[13] = 1.0; gain -= 1.0;} else {f[13] = gain; gain = 0.0;} if (gain > 1.0) {f[14] = 1.0; gain -= 1.0;} else {f[14] = gain; gain = 0.0;} if (gain > 1.0) {f[15] = 1.0; gain -= 1.0;} else {f[15] = gain; gain = 0.0;} if (gain > 1.0) {f[16] = 1.0; gain -= 1.0;} else {f[16] = gain; gain = 0.0;} if (gain > 1.0) {f[17] = 1.0; gain -= 1.0;} else {f[17] = gain; gain = 0.0;} if (gain > 1.0) {f[18] = 1.0; gain -= 1.0;} else {f[18] = gain; gain = 0.0;} if (gain > 1.0) {f[19] = 1.0; gain -= 1.0;} else {f[19] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; f[10] /= overallscale; f[11] /= overallscale; f[12] /= overallscale; f[13] /= overallscale; f[14] /= overallscale; f[15] /= overallscale; f[16] /= overallscale; f[17] /= overallscale; f[18] /= overallscale; f[19] /= overallscale; //and now it's neatly scaled, too while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; velocityL = lastSampleL - inputSampleL; correctionL = previousVelocityL - velocityL; bL[19] = bL[18]; bL[18] = bL[17]; bL[17] = bL[16]; bL[16] = bL[15]; bL[15] = bL[14]; bL[14] = bL[13]; bL[13] = bL[12]; bL[12] = bL[11]; bL[11] = bL[10]; bL[10] = bL[9]; bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = accumulatorSampleL = correctionL; //we are accumulating rates of change of the rate of change accumulatorSampleL *= f[0]; accumulatorSampleL += (bL[1] * f[1]); accumulatorSampleL += (bL[2] * f[2]); accumulatorSampleL += (bL[3] * f[3]); accumulatorSampleL += (bL[4] * f[4]); accumulatorSampleL += (bL[5] * f[5]); accumulatorSampleL += (bL[6] * f[6]); accumulatorSampleL += (bL[7] * f[7]); accumulatorSampleL += (bL[8] * f[8]); accumulatorSampleL += (bL[9] * f[9]); accumulatorSampleL += (bL[10] * f[10]); accumulatorSampleL += (bL[11] * f[11]); accumulatorSampleL += (bL[12] * f[12]); accumulatorSampleL += (bL[13] * f[13]); accumulatorSampleL += (bL[14] * f[14]); accumulatorSampleL += (bL[15] * f[15]); accumulatorSampleL += (bL[16] * f[16]); accumulatorSampleL += (bL[17] * f[17]); accumulatorSampleL += (bL[18] * f[18]); accumulatorSampleL += (bL[19] * f[19]); velocityL = previousVelocityL + accumulatorSampleL; inputSampleL = lastSampleL + velocityL; lastSampleL = inputSampleL; previousVelocityL = -velocityL * pow(trim,2); //left channel done velocityR = lastSampleR - inputSampleR; correctionR = previousVelocityR - velocityR; bR[19] = bR[18]; bR[18] = bR[17]; bR[17] = bR[16]; bR[16] = bR[15]; bR[15] = bR[14]; bR[14] = bR[13]; bR[13] = bR[12]; bR[12] = bR[11]; bR[11] = bR[10]; bR[10] = bR[9]; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = accumulatorSampleR = correctionR; //we are accumulating rates of change of the rate of change accumulatorSampleR *= f[0]; accumulatorSampleR += (bR[1] * f[1]); accumulatorSampleR += (bR[2] * f[2]); accumulatorSampleR += (bR[3] * f[3]); accumulatorSampleR += (bR[4] * f[4]); accumulatorSampleR += (bR[5] * f[5]); accumulatorSampleR += (bR[6] * f[6]); accumulatorSampleR += (bR[7] * f[7]); accumulatorSampleR += (bR[8] * f[8]); accumulatorSampleR += (bR[9] * f[9]); accumulatorSampleR += (bR[10] * f[10]); accumulatorSampleR += (bR[11] * f[11]); accumulatorSampleR += (bR[12] * f[12]); accumulatorSampleR += (bR[13] * f[13]); accumulatorSampleR += (bR[14] * f[14]); accumulatorSampleR += (bR[15] * f[15]); accumulatorSampleR += (bR[16] * f[16]); accumulatorSampleR += (bR[17] * f[17]); accumulatorSampleR += (bR[18] * f[18]); accumulatorSampleR += (bR[19] * f[19]); //we are doing our repetitive calculations on a separate value velocityR = previousVelocityR + accumulatorSampleR; inputSampleR = lastSampleR + velocityR; lastSampleR = inputSampleR; previousVelocityR = -velocityR * pow(trim,2); //right channel done if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Aura::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double correctionL; double correctionR; double accumulatorSampleL; double accumulatorSampleR; double velocityL; double velocityR; double trim = A; double wet = B; double dry = 1.0 - wet; double overallscale = trim * 10.0; double gain = overallscale + (pow(wet,3) * 0.187859642462067); trim *= (1.0 - (pow(wet,3) * 0.187859642462067)); long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; if (gain < 1.0) gain = 1.0; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} if (gain > 1.0) {f[10] = 1.0; gain -= 1.0;} else {f[10] = gain; gain = 0.0;} if (gain > 1.0) {f[11] = 1.0; gain -= 1.0;} else {f[11] = gain; gain = 0.0;} if (gain > 1.0) {f[12] = 1.0; gain -= 1.0;} else {f[12] = gain; gain = 0.0;} if (gain > 1.0) {f[13] = 1.0; gain -= 1.0;} else {f[13] = gain; gain = 0.0;} if (gain > 1.0) {f[14] = 1.0; gain -= 1.0;} else {f[14] = gain; gain = 0.0;} if (gain > 1.0) {f[15] = 1.0; gain -= 1.0;} else {f[15] = gain; gain = 0.0;} if (gain > 1.0) {f[16] = 1.0; gain -= 1.0;} else {f[16] = gain; gain = 0.0;} if (gain > 1.0) {f[17] = 1.0; gain -= 1.0;} else {f[17] = gain; gain = 0.0;} if (gain > 1.0) {f[18] = 1.0; gain -= 1.0;} else {f[18] = gain; gain = 0.0;} if (gain > 1.0) {f[19] = 1.0; gain -= 1.0;} else {f[19] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; f[10] /= overallscale; f[11] /= overallscale; f[12] /= overallscale; f[13] /= overallscale; f[14] /= overallscale; f[15] /= overallscale; f[16] /= overallscale; f[17] /= overallscale; f[18] /= overallscale; f[19] /= overallscale; //and now it's neatly scaled, too while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; velocityL = lastSampleL - inputSampleL; correctionL = previousVelocityL - velocityL; bL[19] = bL[18]; bL[18] = bL[17]; bL[17] = bL[16]; bL[16] = bL[15]; bL[15] = bL[14]; bL[14] = bL[13]; bL[13] = bL[12]; bL[12] = bL[11]; bL[11] = bL[10]; bL[10] = bL[9]; bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = accumulatorSampleL = correctionL; //we are accumulating rates of change of the rate of change accumulatorSampleL *= f[0]; accumulatorSampleL += (bL[1] * f[1]); accumulatorSampleL += (bL[2] * f[2]); accumulatorSampleL += (bL[3] * f[3]); accumulatorSampleL += (bL[4] * f[4]); accumulatorSampleL += (bL[5] * f[5]); accumulatorSampleL += (bL[6] * f[6]); accumulatorSampleL += (bL[7] * f[7]); accumulatorSampleL += (bL[8] * f[8]); accumulatorSampleL += (bL[9] * f[9]); accumulatorSampleL += (bL[10] * f[10]); accumulatorSampleL += (bL[11] * f[11]); accumulatorSampleL += (bL[12] * f[12]); accumulatorSampleL += (bL[13] * f[13]); accumulatorSampleL += (bL[14] * f[14]); accumulatorSampleL += (bL[15] * f[15]); accumulatorSampleL += (bL[16] * f[16]); accumulatorSampleL += (bL[17] * f[17]); accumulatorSampleL += (bL[18] * f[18]); accumulatorSampleL += (bL[19] * f[19]); velocityL = previousVelocityL + accumulatorSampleL; inputSampleL = lastSampleL + velocityL; lastSampleL = inputSampleL; previousVelocityL = -velocityL * pow(trim,2); //left channel done velocityR = lastSampleR - inputSampleR; correctionR = previousVelocityR - velocityR; bR[19] = bR[18]; bR[18] = bR[17]; bR[17] = bR[16]; bR[16] = bR[15]; bR[15] = bR[14]; bR[14] = bR[13]; bR[13] = bR[12]; bR[12] = bR[11]; bR[11] = bR[10]; bR[10] = bR[9]; bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = accumulatorSampleR = correctionR; //we are accumulating rates of change of the rate of change accumulatorSampleR *= f[0]; accumulatorSampleR += (bR[1] * f[1]); accumulatorSampleR += (bR[2] * f[2]); accumulatorSampleR += (bR[3] * f[3]); accumulatorSampleR += (bR[4] * f[4]); accumulatorSampleR += (bR[5] * f[5]); accumulatorSampleR += (bR[6] * f[6]); accumulatorSampleR += (bR[7] * f[7]); accumulatorSampleR += (bR[8] * f[8]); accumulatorSampleR += (bR[9] * f[9]); accumulatorSampleR += (bR[10] * f[10]); accumulatorSampleR += (bR[11] * f[11]); accumulatorSampleR += (bR[12] * f[12]); accumulatorSampleR += (bR[13] * f[13]); accumulatorSampleR += (bR[14] * f[14]); accumulatorSampleR += (bR[15] * f[15]); accumulatorSampleR += (bR[16] * f[16]); accumulatorSampleR += (bR[17] * f[17]); accumulatorSampleR += (bR[18] * f[18]); accumulatorSampleR += (bR[19] * f[19]); //we are doing our repetitive calculations on a separate value velocityR = previousVelocityR + accumulatorSampleR; inputSampleR = lastSampleR + velocityR; lastSampleR = inputSampleR; previousVelocityR = -velocityR * pow(trim,2); //right channel done if (wet !=1.0) { inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); } //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }