/* ======================================== * ADT - ADT.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __ADT_H #include "ADT.h" #endif void ADT::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double gain = A * 1.272; double targetA = pow(B,4) * 4790.0; double fractionA; double minusA; double intensityA = C-0.5; //first delay double targetB = (pow(D,4) * 4790.0); double fractionB; double minusB; double intensityB = E-0.5; //second delay double output = F*2.0; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss if (fabs(offsetA - targetA) > 1000) offsetA = targetA; offsetA = ((offsetA*999.0)+targetA)/1000.0; fractionA = offsetA - floor(offsetA); minusA = 1.0 - fractionA; if (fabs(offsetB - targetB) > 1000) offsetB = targetB; offsetB = ((offsetB*999.0)+targetB)/1000.0; fractionB = offsetB - floor(offsetB); minusB = 1.0 - fractionB; //chase delay taps for smooth action if (gain > 0) {inputSampleL /= gain; inputSampleR /= gain;} if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); //Spiral: lean out the sound a little when decoded by ConsoleBuss if (gcount < 1 || gcount > 4800) {gcount = 4800;} int count = gcount; double totalL = 0.0; double totalR = 0.0; double tempL; double tempR; pL[count+4800] = pL[count] = inputSampleL; pR[count+4800] = pR[count] = inputSampleR; //double buffer if (intensityA != 0.0) { count = (int)(gcount+floor(offsetA)); tempL = (pL[count] * minusA); //less as value moves away from .0 tempL += pL[count+1]; //we can assume always using this in one way or another? tempL += (pL[count+2] * fractionA); //greater as value moves away from .0 tempL -= (((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50); //interpolation hacks 'r us totalL += (tempL * intensityA); tempR = (pR[count] * minusA); //less as value moves away from .0 tempR += pR[count+1]; //we can assume always using this in one way or another? tempR += (pR[count+2] * fractionA); //greater as value moves away from .0 tempR -= (((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50); //interpolation hacks 'r us totalR += (tempR * intensityA); } if (intensityB != 0.0) { count = (int)(gcount+floor(offsetB)); tempL = (pL[count] * minusB); //less as value moves away from .0 tempL += pL[count+1]; //we can assume always using this in one way or another? tempL += (pL[count+2] * fractionB); //greater as value moves away from .0 tempL -= (((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50); //interpolation hacks 'r us totalL += (tempL * intensityB); tempR = (pR[count] * minusB); //less as value moves away from .0 tempR += pR[count+1]; //we can assume always using this in one way or another? tempR += (pR[count+2] * fractionB); //greater as value moves away from .0 tempR -= (((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50); //interpolation hacks 'r us totalR += (tempR * intensityB); } gcount--; //still scrolling through the samples, remember inputSampleL += totalL; inputSampleR += totalR; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR); //amplitude aspect inputSampleL *= gain; inputSampleR *= gain; if (output < 1.0) {inputSampleL *= output; inputSampleR *= output;} //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void ADT::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double gain = A * 1.272; double targetA = pow(B,4) * 4790.0; double fractionA; double minusA; double intensityA = C-0.5; //first delay double targetB = (pow(D,4) * 4790.0); double fractionB; double minusB; double intensityB = E-0.5; //second delay double output = F*2.0; while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; static int noisesourceL = 0; static int noisesourceR = 850010; int residue; double applyresidue; noisesourceL = noisesourceL % 1700021; noisesourceL++; residue = noisesourceL * noisesourceL; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL += applyresidue; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { inputSampleL -= applyresidue; } noisesourceR = noisesourceR % 1700021; noisesourceR++; residue = noisesourceR * noisesourceR; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR += applyresidue; if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { inputSampleR -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss if (fabs(offsetA - targetA) > 1000) offsetA = targetA; offsetA = ((offsetA*999.0)+targetA)/1000.0; fractionA = offsetA - floor(offsetA); minusA = 1.0 - fractionA; if (fabs(offsetB - targetB) > 1000) offsetB = targetB; offsetB = ((offsetB*999.0)+targetB)/1000.0; fractionB = offsetB - floor(offsetB); minusB = 1.0 - fractionB; //chase delay taps for smooth action if (gain > 0) {inputSampleL /= gain; inputSampleR /= gain;} if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155; if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155; if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155; if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155; inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL)); inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR)); //Spiral: lean out the sound a little when decoded by ConsoleBuss if (gcount < 1 || gcount > 4800) {gcount = 4800;} int count = gcount; double totalL = 0.0; double totalR = 0.0; double tempL; double tempR; pL[count+4800] = pL[count] = inputSampleL; pR[count+4800] = pR[count] = inputSampleR; //double buffer if (intensityA != 0.0) { count = (int)(gcount+floor(offsetA)); tempL = (pL[count] * minusA); //less as value moves away from .0 tempL += pL[count+1]; //we can assume always using this in one way or another? tempL += (pL[count+2] * fractionA); //greater as value moves away from .0 tempL -= (((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50); //interpolation hacks 'r us totalL += (tempL * intensityA); tempR = (pR[count] * minusA); //less as value moves away from .0 tempR += pR[count+1]; //we can assume always using this in one way or another? tempR += (pR[count+2] * fractionA); //greater as value moves away from .0 tempR -= (((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50); //interpolation hacks 'r us totalR += (tempR * intensityA); } if (intensityB != 0.0) { count = (int)(gcount+floor(offsetB)); tempL = (pL[count] * minusB); //less as value moves away from .0 tempL += pL[count+1]; //we can assume always using this in one way or another? tempL += (pL[count+2] * fractionB); //greater as value moves away from .0 tempL -= (((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50); //interpolation hacks 'r us totalL += (tempL * intensityB); tempR = (pR[count] * minusB); //less as value moves away from .0 tempR += pR[count+1]; //we can assume always using this in one way or another? tempR += (pR[count+2] * fractionB); //greater as value moves away from .0 tempR -= (((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50); //interpolation hacks 'r us totalR += (tempR * intensityB); } gcount--; //still scrolling through the samples, remember inputSampleL += totalL; inputSampleR += totalR; if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; //without this, you can get a NaN condition where it spits out DC offset at full blast! inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR); //amplitude aspect inputSampleL *= gain; inputSampleR *= gain; if (output < 1.0) {inputSampleL *= output; inputSampleR *= output;} //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }