/* ======================================== * C5RawChannel - C5RawChannel.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __C5RawChannel_H #include "C5RawChannel.h" #endif void C5RawChannel::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; long double centering = A * 0.5; centering = 1.0 - pow(centering,5); //we can set our centering force from zero to rather high, but //there's a really intense taper on it forcing it to mostly be almost 1.0. //If it's literally 1.0, we don't even apply it, and you get the original //Xmas Morning bugged-out Console5, which is the default setting for Raw Console5. double differenceL; double differenceR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } differenceL = lastSampleChannelL - inputSampleL; lastSampleChannelL = inputSampleL; //derive slew part off direct sample measurement + from last time differenceR = lastSampleChannelR - inputSampleR; lastSampleChannelR = inputSampleR; //derive slew part off direct sample measurement + from last time if (differenceL > 1.0) differenceL = 1.0; if (differenceL < -1.0) differenceL = -1.0; if (differenceR > 1.0) differenceR = 1.0; if (differenceR < -1.0) differenceR = -1.0; inputSampleL = lastFXChannelL + asin(differenceL); lastFXChannelL = inputSampleL; if (centering < 1.0) lastFXChannelL *= centering; //if we're using the crude centering force, it's applied here inputSampleR = lastFXChannelR + asin(differenceR); lastFXChannelR = inputSampleR; if (centering < 1.0) lastFXChannelR *= centering; //if we're using the crude centering force, it's applied here if (lastFXChannelL > 1.0) lastFXChannelL = 1.0; if (lastFXChannelL < -1.0) lastFXChannelL = -1.0; if (lastFXChannelR > 1.0) lastFXChannelR = 1.0; if (lastFXChannelR < -1.0) lastFXChannelR = -1.0; //build new signal off what was present in output last time //slew aspect if (inputSampleL > 1.57079633) inputSampleL = 1.57079633; if (inputSampleL < -1.57079633) inputSampleL = -1.57079633; inputSampleL = sin(inputSampleL); //amplitude aspect if (inputSampleR > 1.57079633) inputSampleR = 1.57079633; if (inputSampleR < -1.57079633) inputSampleR = -1.57079633; inputSampleR = sin(inputSampleR); //amplitude aspect //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void C5RawChannel::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; long double centering = A * 0.5; centering = 1.0 - pow(centering,5); //we can set our centering force from zero to rather high, but //there's a really intense taper on it forcing it to mostly be almost 1.0. //If it's literally 1.0, we don't even apply it, and you get the original //Xmas Morning bugged-out Console5, which is the default setting for Raw Console5. double differenceL; double differenceR; long double inputSampleL; long double inputSampleR; while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } differenceL = lastSampleChannelL - inputSampleL; lastSampleChannelL = inputSampleL; //derive slew part off direct sample measurement + from last time differenceR = lastSampleChannelR - inputSampleR; lastSampleChannelR = inputSampleR; //derive slew part off direct sample measurement + from last time if (differenceL > 1.0) differenceL = 1.0; if (differenceL < -1.0) differenceL = -1.0; if (differenceR > 1.0) differenceR = 1.0; if (differenceR < -1.0) differenceR = -1.0; inputSampleL = lastFXChannelL + asin(differenceL); lastFXChannelL = inputSampleL; if (centering < 1.0) lastFXChannelL *= centering; //if we're using the crude centering force, it's applied here inputSampleR = lastFXChannelR + asin(differenceR); lastFXChannelR = inputSampleR; if (centering < 1.0) lastFXChannelR *= centering; //if we're using the crude centering force, it's applied here if (lastFXChannelL > 1.0) lastFXChannelL = 1.0; if (lastFXChannelL < -1.0) lastFXChannelL = -1.0; if (lastFXChannelR > 1.0) lastFXChannelR = 1.0; if (lastFXChannelR < -1.0) lastFXChannelR = -1.0; //build new signal off what was present in output last time //slew aspect if (inputSampleL > 1.57079633) inputSampleL = 1.57079633; if (inputSampleL < -1.57079633) inputSampleL = -1.57079633; inputSampleL = sin(inputSampleL); //amplitude aspect if (inputSampleR > 1.57079633) inputSampleR = 1.57079633; if (inputSampleR < -1.57079633) inputSampleR = -1.57079633; inputSampleR = sin(inputSampleR); //amplitude aspect //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }