/* ======================================== * AverMatrix - AverMatrix.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __AverMatrix_H #include "AverMatrix.h" #endif void AverMatrix::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overalltaps = (A * 9.0)+1.0; double taps = overalltaps; //this is our averaging, which is not integer but continuous double overallpoles = (B * 9.0)+1.0; //this is the poles of the filter, also not integer but continuous int yLimit = floor(overallpoles)+1; double yPartial = overallpoles - floor(overallpoles); //now we can do a for loop, and also apply the final pole continuously double wet = (C * 2.0)-1.0; double dry = (1.0-wet); if (dry > 1.0) dry = 1.0; int xLimit = 1; for(int x = 0; x < 11; x++) { if (taps > 1.0) { f[x] = 1.0; taps -= 1.0; xLimit++; } else { f[x] = taps; taps = 0.0; } } //there, now we have a neat little moving average with remainders if (xLimit > 9) xLimit = 9; if (overalltaps < 1.0) overalltaps = 1.0; for(int x = 0; x < xLimit; x++) { f[x] /= overalltaps; } //and now it's neatly scaled, too while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37; if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37; long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; long double previousPoleL = 0; long double previousPoleR = 0; for (int y = 0; y < yLimit; y++) { for (int x = xLimit; x >= 0; x--) { bL[x+1][y] = bL[x][y]; bR[x+1][y] = bR[x][y]; } bL[0][y] = previousPoleL = inputSampleL; bR[0][y] = previousPoleR = inputSampleR; inputSampleL = 0.0; inputSampleR = 0.0; for (int x = 0; x < xLimit; x++) { inputSampleL += (bL[x][y] * f[x]); inputSampleR += (bR[x][y] * f[x]); } } inputSampleL = (previousPoleL * (1.0-yPartial)) + (inputSampleL * yPartial); inputSampleR = (previousPoleR * (1.0-yPartial)) + (inputSampleR * yPartial); //in this way we can blend in the final pole inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); //wet can be negative, in which case dry is always full volume and they cancel //begin 32 bit stereo floating point dither int expon; frexpf((float)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); frexpf((float)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void AverMatrix::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overalltaps = (A * 9.0)+1.0; double taps = overalltaps; //this is our averaging, which is not integer but continuous double overallpoles = (B * 9.0)+1.0; //this is the poles of the filter, also not integer but continuous int yLimit = floor(overallpoles)+1; double yPartial = overallpoles - floor(overallpoles); //now we can do a for loop, and also apply the final pole continuously double wet = (C * 2.0)-1.0; double dry = (1.0-wet); if (dry > 1.0) dry = 1.0; int xLimit = 1; for(int x = 0; x < 11; x++) { if (taps > 1.0) { f[x] = 1.0; taps -= 1.0; xLimit++; } else { f[x] = taps; taps = 0.0; } } //there, now we have a neat little moving average with remainders if (xLimit > 9) xLimit = 9; if (overalltaps < 1.0) overalltaps = 1.0; for(int x = 0; x < xLimit; x++) { f[x] /= overalltaps; } //and now it's neatly scaled, too while (--sampleFrames >= 0) { long double inputSampleL = *in1; long double inputSampleR = *in2; if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43; if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43; long double drySampleL = inputSampleL; long double drySampleR = inputSampleR; long double previousPoleL = 0; long double previousPoleR = 0; for (int y = 0; y < yLimit; y++) { for (int x = xLimit; x >= 0; x--) { bL[x+1][y] = bL[x][y]; bR[x+1][y] = bR[x][y]; } bL[0][y] = previousPoleL = inputSampleL; bR[0][y] = previousPoleR = inputSampleR; inputSampleL = 0.0; inputSampleR = 0.0; for (int x = 0; x < xLimit; x++) { inputSampleL += (bL[x][y] * f[x]); inputSampleR += (bR[x][y] * f[x]); } } inputSampleL = (previousPoleL * (1.0-yPartial)) + (inputSampleL * yPartial); inputSampleR = (previousPoleR * (1.0-yPartial)) + (inputSampleR * yPartial); //in this way we can blend in the final pole inputSampleL = (inputSampleL * wet) + (drySampleL * dry); inputSampleR = (inputSampleR * wet) + (drySampleR * dry); //wet can be negative, in which case dry is always full volume and they cancel //begin 64 bit stereo floating point dither int expon; frexp((double)inputSampleL, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); frexp((double)inputSampleR, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); //end 64 bit stereo floating point dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }