/* * File: ToTape5.cpp * * Version: 1.0 * * Created: 6/24/17 * * Copyright: Copyright © 2017 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= ToTape5.cpp =============================================================================*/ #include "ToTape5.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(ToTape5) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::ToTape5 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ToTape5::ToTape5(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ToTape5::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ToTape5::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ToTape5::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ToTape5::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // ToTape5::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ToTape5::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____ToTape5EffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::ToTape5Kernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ToTape5::ToTape5Kernel::Reset() { iirMidRollerA = 0.0; iirMidRollerB = 0.0; iirMidRollerC = 0.0; iirHeadBumpA = 0.0; iirHeadBumpB = 0.0; iirHeadBumpC = 0.0; iirMinHeadBump = 0.0; iirSampleA = 0.0; iirSampleB = 0.0; iirSampleC = 0.0; iirSampleD = 0.0; iirSampleE = 0.0; iirSampleF = 0.0; iirSampleG = 0.0; iirSampleH = 0.0; iirSampleI = 0.0; iirSampleJ = 0.0; iirSampleK = 0.0; iirSampleL = 0.0; iirSampleM = 0.0; iirSampleN = 0.0; iirSampleO = 0.0; iirSampleP = 0.0; iirSampleQ = 0.0; iirSampleR = 0.0; iirSampleS = 0.0; iirSampleT = 0.0; iirSampleU = 0.0; iirSampleV = 0.0; iirSampleW = 0.0; iirSampleX = 0.0; iirSampleY = 0.0; iirSampleZ = 0.0; flip = 0; for (int temp = 0; temp < 999; temp++) {d[temp] = 0.0; e[temp] = 0.0;} gcount = 0; hcount = 0; sweep = 0.0; rateof = 0.5; nextmax = 0.5; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ToTape5::ToTape5Kernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ToTape5::ToTape5Kernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); long double fpOld = 0.618033988749894848204586; //golden ratio! Float64 inputgain = pow(GetParameter( kParam_One )+1.0,3); Float64 outputgain = GetParameter( kParam_Five ); Float64 wet = GetParameter( kParam_Six ); Float64 dry = 1.0 - wet; Float64 trim = 0.211324865405187117745425; Float64 SoftenControl = pow(GetParameter( kParam_Two ),2); Float64 tempRandy = 0.06 + (SoftenControl/10.0); //Float64 RollAmount = (1.0-((SoftenControl * 0.45)/overallscale)); Float64 RollAmount = (1.0-(SoftenControl * 0.45))/overallscale; Float64 HeadBumpControl = pow(GetParameter( kParam_Three ),2); int allpasstemp; int maxdelay = (int)(floor(((HeadBumpControl+0.3)*2.2)*overallscale)); HeadBumpControl *= fabs(HeadBumpControl); Float64 HeadBumpFreq = 0.044/overallscale; Float64 iirAmount = 0.000001/overallscale; Float64 altAmount = 1.0 - iirAmount; Float64 iirHBoostAmount = 0.0001/overallscale; Float64 altHBoostAmount = 1.0 - iirAmount; Float64 depth = pow(GetParameter( kParam_Four ),2)*overallscale; Float64 fluttertrim = 0.005/overallscale; Float64 sweeptrim = (0.0006*depth)/overallscale; Float64 offset; Float64 tupi = 3.141592653589793238 * 2.0; Float64 newrate = 0.005/overallscale; Float64 oldrate = 1.0-newrate; Float64 HighsSample = 0.0; Float64 NonHighsSample = 0.0; Float64 HeadBump = 0.0; Float64 Subtract; Float64 bridgerectifier; Float64 flutterrandy; Float64 randy; Float64 invrandy; SInt32 count; Float64 tempSample; Float64 drySample; long double inputSample; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySample = inputSample; flutterrandy = (rand()/(double)RAND_MAX); randy = flutterrandy * tempRandy; //for soften invrandy = (1.0-randy); randy /= 2.0; //we've set up so that we dial in the amount of the alt sections (in pairs) with invrandy being the source section //now we've got a random flutter, so we're messing with the pitch before tape effects go on if (gcount < 0 || gcount > 300) {gcount = 300;} count = gcount; d[count+301] = d[count] = inputSample; gcount--; //we will also keep the buffer going, even when not in use if (depth != 0.0) { offset = (1.0 + sin(sweep)) * depth; count += (int)floor(offset); bridgerectifier = (d[count] * (1-(offset-floor(offset)))); bridgerectifier += (d[count+1] * (offset-floor(offset))); bridgerectifier -= ((d[count+2] * (offset-floor(offset)))*trim); rateof = (nextmax * newrate) + (rateof * oldrate); sweep += rateof * fluttertrim; sweep += sweep * sweeptrim; if (sweep >= tupi){sweep = 0.0; nextmax = 0.02 + (flutterrandy*0.98);} inputSample = bridgerectifier; //apply to input signal only when flutter is present, interpolate samples } if (inputgain != 1.0) { inputSample *= inputgain; } if (flip < 1 || flip > 3) flip = 1; switch (flip) { case 1: iirMidRollerA = (iirMidRollerA * (1.0 - RollAmount)) + (inputSample * RollAmount); iirMidRollerA = (invrandy * iirMidRollerA) + (randy * iirMidRollerB) + (randy * iirMidRollerC); HighsSample = inputSample - iirMidRollerA; NonHighsSample = iirMidRollerA; iirHeadBumpA += (inputSample * 0.05); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = (invrandy * iirHeadBumpA) + (randy * iirHeadBumpB) + (randy * iirHeadBumpC); break; case 2: iirMidRollerB = (iirMidRollerB * (1.0 - RollAmount)) + (inputSample * RollAmount); iirMidRollerB = (randy * iirMidRollerA) + (invrandy * iirMidRollerB) + (randy * iirMidRollerC); HighsSample = inputSample - iirMidRollerB; NonHighsSample = iirMidRollerB; iirHeadBumpB += (inputSample * 0.05); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = (randy * iirHeadBumpA) + (invrandy * iirHeadBumpB) + (randy * iirHeadBumpC); break; case 3: iirMidRollerC = (iirMidRollerC * (1.0 - RollAmount)) + (inputSample * RollAmount); iirMidRollerC = (randy * iirMidRollerA) + (randy * iirMidRollerB) + (invrandy * iirMidRollerC); HighsSample = inputSample - iirMidRollerC; NonHighsSample = iirMidRollerC; iirHeadBumpC += (inputSample * 0.05); iirHeadBumpC -= (iirHeadBumpC * iirHeadBumpC * iirHeadBumpC * HeadBumpFreq); iirHeadBumpC = (randy * iirHeadBumpA) + (randy * iirHeadBumpB) + (invrandy * iirHeadBumpC); break; } flip++; //increment the triplet counter Subtract = HighsSample; bridgerectifier = fabs(Subtract)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = 1-cos(bridgerectifier); if (Subtract > 0) Subtract = bridgerectifier; if (Subtract < 0) Subtract = -bridgerectifier; inputSample -= Subtract; //Soften works using the MidRoller stuff, defining a bright parallel channel that we apply negative Density //to, and then subtract from the main audio. That makes the 'highs channel subtract' hit only the loudest //transients, plus we are subtracting any artifacts we got from the negative Density. bridgerectifier = fabs(inputSample); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSample > 0) inputSample = bridgerectifier; if (inputSample < 0) inputSample = -bridgerectifier; //drive section: the tape sound includes a very gentle saturation curve, which is always an attenuation. //we cut back on highs before hitting this, and then we're going to subtract highs a second time after. HeadBump = iirHeadBumpA + iirHeadBumpB + iirHeadBumpC; //begin PhaseNudge allpasstemp = hcount - 1; if (allpasstemp < 0 || allpasstemp > maxdelay) {allpasstemp = maxdelay;} HeadBump -= e[allpasstemp] * fpOld; e[hcount] = HeadBump; inputSample *= fpOld; hcount--; if (hcount < 0 || hcount > maxdelay) {hcount = maxdelay;} HeadBump += (e[hcount]); //end PhaseNudge on head bump in lieu of delay. Subtract -= (HeadBump * (HeadBumpControl+iirMinHeadBump)); //makes a second soften and a single head bump after saturation. //we are going to retain this, and then feed it into the highpass filter. That way, we can skip a subtract. //Head Bump retains a trace which is roughly as large as what the highpass will do. tempSample = inputSample; iirMinHeadBump = (iirMinHeadBump * altHBoostAmount) + (fabs(inputSample) * iirHBoostAmount); if (iirMinHeadBump > 0.01) iirMinHeadBump = 0.01; //we want this one rectified so that it's a relatively steady positive value. Boosts can cause it to be //greater than 1 so we clamp it in that case. iirSampleA = (iirSampleA * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleA; Subtract += iirSampleA; iirSampleB = (iirSampleB * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleB; Subtract += iirSampleB; iirSampleC = (iirSampleC * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleC; Subtract += iirSampleC; iirSampleD = (iirSampleD * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleD; Subtract += iirSampleD; iirSampleE = (iirSampleE * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleE; Subtract += iirSampleE; iirSampleF = (iirSampleF * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleF; Subtract += iirSampleF; iirSampleG = (iirSampleG * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleG; Subtract += iirSampleG; iirSampleH = (iirSampleH * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleH; Subtract += iirSampleH; iirSampleI = (iirSampleI * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleI; Subtract += iirSampleI; iirSampleJ = (iirSampleJ * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleJ; Subtract += iirSampleJ; iirSampleK = (iirSampleK * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleK; Subtract += iirSampleK; iirSampleL = (iirSampleL * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleL; Subtract += iirSampleL; iirSampleM = (iirSampleM * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleM; Subtract += iirSampleM; iirSampleN = (iirSampleN * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleN; Subtract += iirSampleN; iirSampleO = (iirSampleO * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleO; Subtract += iirSampleO; iirSampleP = (iirSampleP * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleP; Subtract += iirSampleP; iirSampleQ = (iirSampleQ * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleQ; Subtract += iirSampleQ; iirSampleR = (iirSampleR * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleR; Subtract += iirSampleR; iirSampleS = (iirSampleS * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleS; Subtract += iirSampleS; iirSampleT = (iirSampleT * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleT; Subtract += iirSampleT; iirSampleU = (iirSampleU * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleU; Subtract += iirSampleU; iirSampleV = (iirSampleV * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleV; Subtract += iirSampleV; iirSampleW = (iirSampleW * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleW; Subtract += iirSampleW; iirSampleX = (iirSampleX * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleX; Subtract += iirSampleX; iirSampleY = (iirSampleY * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleY; Subtract += iirSampleY; iirSampleZ = (iirSampleZ * altAmount) + (tempSample * iirAmount); tempSample -= iirSampleZ; Subtract += iirSampleZ; //do the IIR on a dummy sample, and store up the correction in a variable at the same scale as the very low level //numbers being used. Don't keep doing it against the possibly high level signal number. //This has been known to add a resonant quality to the cutoff, which we're using on purpose. inputSample -= Subtract; //apply stored up tiny corrections. if (outputgain != 1.0) { inputSample *= outputgain; } if (wet !=1.0) { inputSample = (inputSample * wet) + (drySample * dry); } //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }