/* * File: Tape.cpp * * Version: 1.0 * * Created: 1/21/20 * * Copyright: Copyright © 2020 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Tape.cpp =============================================================================*/ #include "Tape.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Tape) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::Tape //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tape::Tape(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Tape::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Tape::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Tape::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Tape::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Tape::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Tape::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____TapeEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::TapeKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Tape::TapeKernel::Reset() { iirMidRollerA = 0.0; iirMidRollerB = 0.0; iirHeadBumpA = 0.0; iirHeadBumpB = 0.0; flip = false; for (int x = 0; x < 9; x++) {biquadA[x] = 0.0;biquadB[x] = 0.0;biquadC[x] = 0.0;biquadD[x] = 0.0;} lastSample = 0.0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Tape::TapeKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Tape::TapeKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; long double overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 inputgain = pow(10.0,GetParameter( kParam_One )/20.0); Float64 HeadBumpFreq = 0.12/overallscale; Float64 softness = 0.618033988749894848204586; Float64 RollAmount = (1.0 - softness) / overallscale; //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist //[1] is resonance, 0.7071 is Butterworth. Also can't be zero biquadA[0] = biquadB[0] = 0.0072/overallscale; biquadA[1] = biquadB[1] = 0.0009; double K = tan(M_PI * biquadB[0]); double norm = 1.0 / (1.0 + K / biquadB[1] + K * K); biquadA[2] = biquadB[2] = K / biquadB[1] * norm; biquadA[4] = biquadB[4] = -biquadB[2]; biquadA[5] = biquadB[5] = 2.0 * (K * K - 1.0) * norm; biquadA[6] = biquadB[6] = (1.0 - K / biquadB[1] + K * K) * norm; biquadC[0] = biquadD[0] = 0.032/overallscale; biquadC[1] = biquadD[1] = 0.0007; K = tan(M_PI * biquadD[0]); norm = 1.0 / (1.0 + K / biquadD[1] + K * K); biquadC[2] = biquadD[2] = K / biquadD[1] * norm; biquadC[4] = biquadD[4] = -biquadD[2]; biquadC[5] = biquadD[5] = 2.0 * (K * K - 1.0) * norm; biquadC[6] = biquadD[6] = (1.0 - K / biquadD[1] + K * K) * norm; while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; long double drySample = inputSample; long double HighsSample = 0.0; long double NonHighsSample = 0.0; long double tempSample; if (flip) { iirMidRollerA = (iirMidRollerA * (1.0 - RollAmount)) + (inputSample * RollAmount); HighsSample = inputSample - iirMidRollerA; NonHighsSample = iirMidRollerA; iirHeadBumpA += (inputSample * 0.05); iirHeadBumpA -= (iirHeadBumpA * iirHeadBumpA * iirHeadBumpA * HeadBumpFreq); iirHeadBumpA = sin(iirHeadBumpA); tempSample = (iirHeadBumpA * biquadA[2]) + biquadA[7]; biquadA[7] = (iirHeadBumpA * biquadA[3]) - (tempSample * biquadA[5]) + biquadA[8]; biquadA[8] = (iirHeadBumpA * biquadA[4]) - (tempSample * biquadA[6]); iirHeadBumpA = tempSample; //interleaved biquad if (iirHeadBumpA > 1.0) iirHeadBumpA = 1.0; if (iirHeadBumpA < -1.0) iirHeadBumpA = -1.0; iirHeadBumpA = asin(iirHeadBumpA); inputSample = sin(inputSample); tempSample = (inputSample * biquadC[2]) + biquadC[7]; biquadC[7] = (inputSample * biquadC[3]) - (tempSample * biquadC[5]) + biquadC[8]; biquadC[8] = (inputSample * biquadC[4]) - (tempSample * biquadC[6]); inputSample = tempSample; //interleaved biquad if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; inputSample = asin(inputSample); } else { iirMidRollerB = (iirMidRollerB * (1.0 - RollAmount)) + (inputSample * RollAmount); HighsSample = inputSample - iirMidRollerB; NonHighsSample = iirMidRollerB; iirHeadBumpB += (inputSample * 0.05); iirHeadBumpB -= (iirHeadBumpB * iirHeadBumpB * iirHeadBumpB * HeadBumpFreq); iirHeadBumpB = sin(iirHeadBumpB); tempSample = (iirHeadBumpB * biquadB[2]) + biquadB[7]; biquadB[7] = (iirHeadBumpB * biquadB[3]) - (tempSample * biquadB[5]) + biquadB[8]; biquadB[8] = (iirHeadBumpB * biquadB[4]) - (tempSample * biquadB[6]); iirHeadBumpB = tempSample; //interleaved biquad if (iirHeadBumpB > 1.0) iirHeadBumpB = 1.0; if (iirHeadBumpB < -1.0) iirHeadBumpB = -1.0; iirHeadBumpB = asin(iirHeadBumpB); inputSample = sin(inputSample); tempSample = (inputSample * biquadD[2]) + biquadD[7]; biquadD[7] = (inputSample * biquadD[3]) - (tempSample * biquadD[5]) + biquadD[8]; biquadD[8] = (inputSample * biquadD[4]) - (tempSample * biquadD[6]); inputSample = tempSample; //interleaved biquad if (inputSample > 1.0) inputSample = 1.0; if (inputSample < -1.0) inputSample = -1.0; inputSample = asin(inputSample); } flip = !flip; long double groundSample = drySample - inputSample; //set up UnBox if (inputgain != 1.0) { inputSample *= inputgain; } //gain boost inside UnBox: do not boost fringe audio long double applySoften = fabs(HighsSample)*1.57079633; if (applySoften > 1.57079633) applySoften = 1.57079633; applySoften = 1-cos(applySoften); if (HighsSample > 0) inputSample -= applySoften; if (HighsSample < 0) inputSample += applySoften; //apply Soften depending on polarity if (inputSample > 1.2533141373155) inputSample = 1.2533141373155; if (inputSample < -1.2533141373155) inputSample = -1.2533141373155; //clip to 1.2533141373155 to reach maximum output inputSample = sin(inputSample * fabs(inputSample)) / ((inputSample == 0.0) ?1:fabs(inputSample)); //Spiral, for cleanest most optimal tape effect Float64 suppress = (1.0-fabs(inputSample)) * 0.00013; if (iirHeadBumpA > suppress) iirHeadBumpA -= suppress; if (iirHeadBumpA < -suppress) iirHeadBumpA += suppress; if (iirHeadBumpB > suppress) iirHeadBumpB -= suppress; if (iirHeadBumpB < -suppress) iirHeadBumpB += suppress; //restrain resonant quality of head bump algorithm inputSample += groundSample; //apply UnBox processing inputSample += ((iirHeadBumpA + iirHeadBumpB) * 0.1);//and head bump if (lastSample >= 0.99) { if (inputSample < 0.99) lastSample = ((0.99*softness) + (inputSample * (1.0-softness))); else lastSample = 0.99; } if (lastSample <= -0.99) { if (inputSample > -0.99) lastSample = ((-0.99*softness) + (inputSample * (1.0-softness))); else lastSample = -0.99; } if (inputSample > 0.99) { if (lastSample < 0.99) inputSample = ((0.99*softness) + (lastSample * (1.0-softness))); else inputSample = 0.99; } if (inputSample < -0.99) { if (lastSample > -0.99) inputSample = ((-0.99*softness) + (lastSample * (1.0-softness))); else inputSample = -0.99; } lastSample = inputSample; if (inputSample > 0.99) inputSample = 0.99; if (inputSample < -0.99) inputSample = -0.99; //final iron bar //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }