/* * File: ResEQ.cpp * * Version: 1.0 * * Created: 8/1/07 * * Copyright: Copyright © 2007 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= ResEQ.h =============================================================================*/ #include "ResEQ.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(ResEQ) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::ResEQ //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ResEQ::ResEQ(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); SetParameter(kParam_Seven, kDefaultValue_ParamSeven ); SetParameter(kParam_Eight, kDefaultValue_ParamEight ); SetParameter(kParam_Nine, kDefaultValue_ParamNine ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ResEQ::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ResEQ::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; case kParam_Seven: AUBase::FillInParameterName (outParameterInfo, kParameterSevenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSeven; break; case kParam_Eight: AUBase::FillInParameterName (outParameterInfo, kParameterEightName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamEight; break; case kParam_Nine: AUBase::FillInParameterName (outParameterInfo, kParameterNineName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamNine; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ResEQ::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ResEQ::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult ResEQ::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____ResEQEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::ResEQKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ResEQ::ResEQKernel::Reset() { register UInt32 count; for(count = 0; count < 60; count++) {b[count] = 0.0; f[count] = 0.0;} framenumber = 0; fpd = 17; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // ResEQ::ResEQKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void ResEQ::ResEQKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, // for version 2 AudioUnits inNumChannels is always 1 bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 v1 = GetParameter( kParam_One ); Float64 v2 = GetParameter( kParam_Two ); Float64 v3 = GetParameter( kParam_Three ); Float64 v4 = GetParameter( kParam_Four ); Float64 v5 = GetParameter( kParam_Five ); Float64 v6 = GetParameter( kParam_Six ); Float64 v7 = GetParameter( kParam_Seven ); Float64 v8 = GetParameter( kParam_Eight ); Float64 f1 = pow(v1,2); Float64 f2 = pow(v2,2); Float64 f3 = pow(v3,2); Float64 f4 = pow(v4,2); Float64 f5 = pow(v5,2); Float64 f6 = pow(v6,2); Float64 f7 = pow(v7,2); Float64 f8 = pow(v8,2); Float64 wet = GetParameter( kParam_Nine ); Float64 falloff; v1 += 0.2; v2 += 0.2; v3 += 0.2; v4 += 0.2; v5 += 0.2; v6 += 0.2; v7 += 0.2; v8 += 0.2; v1 /= overallscale; v2 /= overallscale; v3 /= overallscale; v4 /= overallscale; v5 /= overallscale; v6 /= overallscale; v7 /= overallscale; v8 /= overallscale; //each process frame we'll update some of the kernel frames. That way we don't have to crunch the whole thing at once, //and we can load a LOT more resonant peaks into the kernel. //amount = 0.005 + (amount * 0.99); //mAudioUnit->SetParameter( kParam_Nine, amount ); // mAudioUnit->Globals()->SetParameter( kParam_Nine, amount ); // AudioUnitParameter param; // param.mAudioUnit = mAudioUnit->GetComponentInstance(); // param.mScope = kAudioUnitScope_Global; // param.mParameterID = kParam_Nine; // AUParameterListenerNotify( NULL, NULL, ¶m); framenumber += 1; if (framenumber > 59) framenumber = 1; falloff = sin(framenumber / 19.098992); f[framenumber] = 0.0; if ((framenumber * f1) < 1.57079633) f[framenumber] += (sin((framenumber * f1)*2.0) * falloff * v1); else f[framenumber] += (cos(framenumber * f1) * falloff * v1); if ((framenumber * f2) < 1.57079633) f[framenumber] += (sin((framenumber * f2)*2.0) * falloff * v2); else f[framenumber] += (cos(framenumber * f2) * falloff * v2); if ((framenumber * f3) < 1.57079633) f[framenumber] += (sin((framenumber * f3)*2.0) * falloff * v3); else f[framenumber] += (cos(framenumber * f3) * falloff * v3); if ((framenumber * f4) < 1.57079633) f[framenumber] += (sin((framenumber * f4)*2.0) * falloff * v4); else f[framenumber] += (cos(framenumber * f4) * falloff * v4); if ((framenumber * f5) < 1.57079633) f[framenumber] += (sin((framenumber * f5)*2.0) * falloff * v5); else f[framenumber] += (cos(framenumber * f5) * falloff * v5); if ((framenumber * f6) < 1.57079633) f[framenumber] += (sin((framenumber * f6)*2.0) * falloff * v6); else f[framenumber] += (cos(framenumber * f6) * falloff * v6); if ((framenumber * f7) < 1.57079633) f[framenumber] += (sin((framenumber * f7)*2.0) * falloff * v7); else f[framenumber] += (cos(framenumber * f7) * falloff * v7); if ((framenumber * f8) < 1.57079633) f[framenumber] += (sin((framenumber * f8)*2.0) * falloff * v8); else f[framenumber] += (cos(framenumber * f8) * falloff * v8); framenumber += 1; if (framenumber > 59) framenumber = 1; falloff = sin(framenumber / 19.098992); f[framenumber] = 0.0; if ((framenumber * f1) < 1.57079633) f[framenumber] += (sin((framenumber * f1)*2.0) * falloff * v1); else f[framenumber] += (cos(framenumber * f1) * falloff * v1); if ((framenumber * f2) < 1.57079633) f[framenumber] += (sin((framenumber * f2)*2.0) * falloff * v2); else f[framenumber] += (cos(framenumber * f2) * falloff * v2); if ((framenumber * f3) < 1.57079633) f[framenumber] += (sin((framenumber * f3)*2.0) * falloff * v3); else f[framenumber] += (cos(framenumber * f3) * falloff * v3); if ((framenumber * f4) < 1.57079633) f[framenumber] += (sin((framenumber * f4)*2.0) * falloff * v4); else f[framenumber] += (cos(framenumber * f4) * falloff * v4); if ((framenumber * f5) < 1.57079633) f[framenumber] += (sin((framenumber * f5)*2.0) * falloff * v5); else f[framenumber] += (cos(framenumber * f5) * falloff * v5); if ((framenumber * f6) < 1.57079633) f[framenumber] += (sin((framenumber * f6)*2.0) * falloff * v6); else f[framenumber] += (cos(framenumber * f6) * falloff * v6); if ((framenumber * f7) < 1.57079633) f[framenumber] += (sin((framenumber * f7)*2.0) * falloff * v7); else f[framenumber] += (cos(framenumber * f7) * falloff * v7); if ((framenumber * f8) < 1.57079633) f[framenumber] += (sin((framenumber * f8)*2.0) * falloff * v8); else f[framenumber] += (cos(framenumber * f8) * falloff * v8); //done updating the kernel for this go-round while (nSampleFrames-- > 0) { long double inputSample = *sourceP; if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37; long double drySample = inputSample; b[59] = b[58]; b[58] = b[57]; b[57] = b[56]; b[56] = b[55]; b[55] = b[54]; b[54] = b[53]; b[53] = b[52]; b[52] = b[51]; b[51] = b[50]; b[50] = b[49]; b[49] = b[48]; b[48] = b[47]; b[47] = b[46]; b[46] = b[45]; b[45] = b[44]; b[44] = b[43]; b[43] = b[42]; b[42] = b[41]; b[41] = b[40]; b[40] = b[39]; b[39] = b[38]; b[38] = b[37]; b[37] = b[36]; b[36] = b[35]; b[35] = b[34]; b[34] = b[33]; b[33] = b[32]; b[32] = b[31]; b[31] = b[30]; b[30] = b[29]; b[29] = b[28]; b[28] = b[27]; b[27] = b[26]; b[26] = b[25]; b[25] = b[24]; b[24] = b[23]; b[23] = b[22]; b[22] = b[21]; b[21] = b[20]; b[20] = b[19]; b[19] = b[18]; b[18] = b[17]; b[17] = b[16]; b[16] = b[15]; b[15] = b[14]; b[14] = b[13]; b[13] = b[12]; b[12] = b[11]; b[11] = b[10]; b[10] = b[9]; b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample; inputSample = (b[1] * f[1]); inputSample += (b[2] * f[2]); inputSample += (b[3] * f[3]); inputSample += (b[4] * f[4]); inputSample += (b[5] * f[5]); inputSample += (b[6] * f[6]); inputSample += (b[7] * f[7]); inputSample += (b[8] * f[8]); inputSample += (b[9] * f[9]); inputSample += (b[10] * f[10]); inputSample += (b[11] * f[11]); inputSample += (b[12] * f[12]); inputSample += (b[13] * f[13]); inputSample += (b[14] * f[14]); inputSample += (b[15] * f[15]); inputSample += (b[16] * f[16]); inputSample += (b[17] * f[17]); inputSample += (b[18] * f[18]); inputSample += (b[19] * f[19]); inputSample += (b[20] * f[20]); inputSample += (b[21] * f[21]); inputSample += (b[22] * f[22]); inputSample += (b[23] * f[23]); inputSample += (b[24] * f[24]); inputSample += (b[25] * f[25]); inputSample += (b[26] * f[26]); inputSample += (b[27] * f[27]); inputSample += (b[28] * f[28]); inputSample += (b[29] * f[29]); inputSample += (b[30] * f[30]); inputSample += (b[31] * f[31]); inputSample += (b[32] * f[32]); inputSample += (b[33] * f[33]); inputSample += (b[34] * f[34]); inputSample += (b[35] * f[35]); inputSample += (b[36] * f[36]); inputSample += (b[37] * f[37]); inputSample += (b[38] * f[38]); inputSample += (b[39] * f[39]); inputSample += (b[40] * f[40]); inputSample += (b[41] * f[41]); inputSample += (b[42] * f[42]); inputSample += (b[43] * f[43]); inputSample += (b[44] * f[44]); inputSample += (b[45] * f[45]); inputSample += (b[46] * f[46]); inputSample += (b[47] * f[47]); inputSample += (b[48] * f[48]); inputSample += (b[49] * f[49]); inputSample += (b[50] * f[50]); inputSample += (b[51] * f[51]); inputSample += (b[52] * f[52]); inputSample += (b[53] * f[53]); inputSample += (b[54] * f[54]); inputSample += (b[55] * f[55]); inputSample += (b[56] * f[56]); inputSample += (b[57] * f[57]); inputSample += (b[58] * f[58]); inputSample += (b[59] * f[59]); inputSample /= 12.0; //inlined- this is our little EQ kernel. Longer will give better tightness on bass frequencies. inputSample = (drySample*(1.0-wet))+(inputSample*wet); //begin 32 bit floating point dither int expon; frexpf((float)inputSample, &expon); fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; inputSample += static_cast(fpd) * 5.960464655174751e-36L * pow(2,expon+62); //end 32 bit floating point dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }