/* * File: PyewacketMono.cpp * * Version: 1.0 * * Created: 10/20/16 * * Copyright: Copyright © 2016 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= PyewacketMono.cpp =============================================================================*/ #include "PyewacketMono.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(PyewacketMono) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::PyewacketMono //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PyewacketMono::PyewacketMono(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult PyewacketMono::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult PyewacketMono::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -12.0; outParameterInfo.maxValue = 12.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult PyewacketMono::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult PyewacketMono::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // PyewacketMono::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult PyewacketMono::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____PyewacketMonoEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::PyewacketMonoKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void PyewacketMono::PyewacketMonoKernel::Reset() { fpNShape = 0.0; chase = 1.0; lastrectifier = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // PyewacketMono::PyewacketMonoKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void PyewacketMono::PyewacketMonoKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); if (overallscale < 0.1) overallscale = 1.0; //insanity check long double fpOld = 0.618033988749894848204586; //golden ratio! long double fpNew = 1.0 - fpOld; long double inputSample; long double drySample; Float64 bridgerectifier; Float64 temprectifier; Float64 inputSense; Float64 inputGain = pow(10.0,(GetParameter( kParam_One ))/20.0); Float64 attack = ((GetParameter( kParam_Two )+0.5)*0.006)/overallscale; Float64 decay = ((GetParameter( kParam_Two )+0.01)*0.0004)/overallscale; Float64 outputGain = pow(10.0,(GetParameter( kParam_Three ))/20.0); Float64 wet; Float64 maxblur; Float64 blurdry; Float64 out; Float64 dry; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } if (inputGain != 1.0) { inputSample *= inputGain; } drySample = inputSample; inputSense = fabs(inputSample); if (chase < inputSense) chase += attack; if (chase > 1.0) chase = 1.0; if (chase > inputSense) chase -= decay; if (chase < 0.0) chase = 0.0; //chase will be between 0 and ? (if input is super hot) out = wet = chase; if (wet > 1.0) wet = 1.0; maxblur = wet * fpNew; blurdry = 1.0 - maxblur; //scaled back so that blur remains balance of both if (out > fpOld) out = fpOld - (out - fpOld); if (out < 0.0) out = 0.0; dry = 1.0 - wet; if (inputSample > 1.57079633) inputSample = 1.57079633; if (inputSample < -1.57079633) inputSample = -1.57079633; bridgerectifier = fabs(inputSample); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; temprectifier = 1-cos(bridgerectifier); bridgerectifier = ((lastrectifier*maxblur) + (temprectifier*blurdry)); lastrectifier = temprectifier; //starved version is also blurred by one sample if (inputSample > 0) inputSample = (inputSample*dry)+(bridgerectifier*out); else inputSample = (inputSample*dry)-(bridgerectifier*out); if (outputGain != 1.0) { inputSample *= outputGain; } //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }