/* * File: Pressure4Mono.cpp * * Version: 1.0 * * Created: 9/8/16 * * Copyright: Copyright © 2016 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Pressure4Mono.cpp =============================================================================*/ #include "Pressure4Mono.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Pressure4Mono) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::Pressure4Mono //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pressure4Mono::Pressure4Mono(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Pressure4Mono::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Pressure4Mono::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Pressure4Mono::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Pressure4Mono::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Pressure4Mono::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Pressure4Mono::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____Pressure4MonoEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::Pressure4MonoKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Pressure4Mono::Pressure4MonoKernel::Reset() { fpNShape = 0.0; muSpeedA = 10000; muSpeedB = 10000; muCoefficientA = 1; muCoefficientB = 1; muVary = 1; flip = false; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Pressure4Mono::Pressure4MonoKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Pressure4Mono::Pressure4MonoKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float32 *destP = inDestP; Float64 threshold = 1.0 - (GetParameter( kParam_One ) * 0.95); Float64 muMakeupGain = 1.0 / threshold; //gain settings around threshold Float64 release = pow((1.28-GetParameter( kParam_Two )),5)*32768.0; release /= overallscale; Float64 fastest = sqrt(release); //speed settings around release long double bridgerectifier; Float64 coefficient; Float64 mewiness = GetParameter( kParam_Three ); Float64 outputGain = GetParameter( kParam_Four ); Float64 unmewiness; bool positivemu; if (mewiness >= 0) { positivemu = true; unmewiness = 1.0-mewiness; } else { positivemu = false; mewiness = -mewiness; unmewiness = 1.0-mewiness; } // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~ long double inputSample; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } sourceP += inNumChannels; // advance to next frame (e.g. if stereo, we're advancing 2 samples); inputSample = inputSample * muMakeupGain; if (flip) { if (fabs(inputSample) > threshold) { muVary = threshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedA)); muCoefficientA = muCoefficientA * (muAttack-1.0); if (muVary < threshold) { muCoefficientA = muCoefficientA + threshold; } else { muCoefficientA = muCoefficientA + muVary; } muCoefficientA = muCoefficientA / muAttack; } else { muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0); muCoefficientA = muCoefficientA + 1.0; muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA); } muNewSpeed = muSpeedA * (muSpeedA-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedA = muNewSpeed / muSpeedA; } else { if (fabs(inputSample) > threshold) { muVary = threshold / fabs(inputSample); muAttack = sqrt(fabs(muSpeedB)); muCoefficientB = muCoefficientB * (muAttack-1); if (muVary < threshold) { muCoefficientB = muCoefficientB + threshold; } else { muCoefficientB = muCoefficientB + muVary; } muCoefficientB = muCoefficientB / muAttack; } else { muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0); muCoefficientB = muCoefficientB + 1.0; muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB); } muNewSpeed = muSpeedB * (muSpeedB-1); muNewSpeed = muNewSpeed + fabs(inputSample*release)+fastest; muSpeedB = muNewSpeed / muSpeedB; } //got coefficients, adjusted speeds if (flip) { if (positivemu) coefficient = pow(muCoefficientA,2); else coefficient = sqrt(muCoefficientA); coefficient = (coefficient*mewiness)+(muCoefficientA*unmewiness); inputSample *= coefficient; } else { if (positivemu) coefficient = pow(muCoefficientB,2); else coefficient = sqrt(muCoefficientB); coefficient = (coefficient*mewiness)+(muCoefficientB*unmewiness); inputSample *= coefficient; } //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~ //applied gain correction to control output level- tends to constrain sound rather than inflate it if (outputGain != 1.0) { inputSample *= outputGain; } bridgerectifier = fabs(inputSample); if (bridgerectifier > 1.57079633) bridgerectifier = 1.0; else bridgerectifier = sin(bridgerectifier); if (inputSample > 0){inputSample = bridgerectifier;} else {inputSample = -bridgerectifier;} //second stage of overdrive to prevent overs and allow bloody loud extremeness flip = !flip; //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; destP += inNumChannels; } }