/* * File: Noise.cpp * * Version: 1.0 * * Created: 5/7/14 * * Copyright: Copyright © 2014 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Noise.cpp =============================================================================*/ #include "Noise.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Noise) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::Noise //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Noise::Noise(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Noise::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Noise::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Noise::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Noise::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Noise::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Noise::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____NoiseEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::NoiseKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Noise::NoiseKernel::Reset() { position = 99999999; quadratic = 0; noiseA = 0.0; noiseB = 0.0; noiseC = 0.0; rumbleA = 0.0; rumbleB = 0.0; surge = 0.0; flip = false; filterflip = false; for(int count = 0; count < 11; count++) {b[count] = 0.0; f[count] = 0.0;} fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Noise::NoiseKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Noise::NoiseKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 cutoff; Float64 cutofftarget = (GetParameter( kParam_One )*3.5); Float64 rumblecutoff = cutofftarget * 0.005; Float64 invcutoff; long double inputSample; Float64 drySample; Float64 highpass = GetParameter( kParam_Three )*38.0; int lowcut = floor(highpass); int dcut; if (lowcut > 37) {dcut= 1151;} if (lowcut == 37) {dcut= 1091;} if (lowcut == 36) {dcut= 1087;} if (lowcut == 35) {dcut= 1031;} if (lowcut == 34) {dcut= 1013;} if (lowcut == 33) {dcut= 971;} if (lowcut == 32) {dcut= 907;} if (lowcut == 31) {dcut= 839;} if (lowcut == 30) {dcut= 797;} if (lowcut == 29) {dcut= 733;} if (lowcut == 28) {dcut= 719;} if (lowcut == 27) {dcut= 673;} if (lowcut == 26) {dcut= 613;} if (lowcut == 25) {dcut= 593;} if (lowcut == 24) {dcut= 541;} if (lowcut == 23) {dcut= 479;} if (lowcut == 22) {dcut= 431;} if (lowcut == 21) {dcut= 419;} if (lowcut == 20) {dcut= 373;} if (lowcut == 19) {dcut= 311;} if (lowcut == 18) {dcut= 293;} if (lowcut == 17) {dcut= 233;} if (lowcut == 16) {dcut= 191;} if (lowcut == 15) {dcut= 173;} if (lowcut == 14) {dcut= 131;} if (lowcut == 13) {dcut= 113;} if (lowcut == 12) {dcut= 71;} if (lowcut == 11) {dcut= 53;} if (lowcut == 10) {dcut= 31;} if (lowcut == 9) {dcut= 27;} if (lowcut == 8) {dcut= 23;} if (lowcut == 7) {dcut= 19;} if (lowcut == 6) {dcut= 17;} if (lowcut == 5) {dcut= 13;} if (lowcut == 4) {dcut= 11;} if (lowcut == 3) {dcut= 7;} if (lowcut == 2) {dcut= 5;} if (lowcut < 2) {dcut= 3;} highpass = GetParameter( kParam_Two ) * 22.0; lowcut = floor(highpass)+1; Float64 decay = 0.001 - ((1.0-pow(1.0-GetParameter( kParam_Four ),3))*0.001); if (decay == 0.001) decay = 0.1; Float64 wet = GetParameter( kParam_Six ); Float64 dry = 1.0 - wet; wet *= 0.01; //correct large gain issue Float64 correctionSample; Float64 accumulatorSample; Float64 overallscale = (GetParameter( kParam_Five )*9.0)+1.0; Float64 gain = overallscale; if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} //there, now we have a neat little moving average with remainders if (overallscale < 1.0) overallscale = 1.0; f[0] /= overallscale; f[1] /= overallscale; f[2] /= overallscale; f[3] /= overallscale; f[4] /= overallscale; f[5] /= overallscale; f[6] /= overallscale; f[7] /= overallscale; f[8] /= overallscale; f[9] /= overallscale; //and now it's neatly scaled, too while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySample = inputSample; if (surge 1.0) surge = 1.0; } else { surge -= ((rand()/(double)RAND_MAX)*(surge-fabs(inputSample))*decay); if (surge < 0.0) surge = 0.0; } cutoff = pow((cutofftarget*surge),5); if (cutoff > 1.0) cutoff = 1.0; invcutoff = 1.0 - cutoff; //set up modified cutoff flip = !flip; filterflip = !filterflip; quadratic -= 1; if (quadratic < 0) { position += 1; quadratic = position * position; quadratic = quadratic % 170003; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % 17011; //% is C++ mod operator quadratic *= quadratic; //quadratic = quadratic % 1709; //% is C++ mod operator //quadratic *= quadratic; quadratic = quadratic % dcut; //% is C++ mod operator quadratic *= quadratic; quadratic = quadratic % lowcut; //sets density of the centering force if (noiseA < 0) {flip = true;} else {flip = false;} } if (flip) noiseA += (rand()/(double)RAND_MAX); else noiseA -= (rand()/(double)RAND_MAX); if (filterflip) { noiseB *= invcutoff; noiseB += (noiseA*cutoff); inputSample = noiseB+noiseC; rumbleA *= (1.0-rumblecutoff); rumbleA += (inputSample*rumblecutoff); } else { noiseC *= invcutoff; noiseC += (noiseA*cutoff); inputSample = noiseB+noiseC; rumbleB *= (1.0-rumblecutoff); rumbleB += (inputSample*rumblecutoff); } inputSample -= (rumbleA+rumbleB); inputSample *= (1.0-rumblecutoff); inputSample *= wet; inputSample += (drySample * dry); //apply the dry to the noise b[9] = b[8]; b[8] = b[7]; b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = accumulatorSample = inputSample; accumulatorSample *= f[0]; accumulatorSample += (b[1] * f[1]); accumulatorSample += (b[2] * f[2]); accumulatorSample += (b[3] * f[3]); accumulatorSample += (b[4] * f[4]); accumulatorSample += (b[5] * f[5]); accumulatorSample += (b[6] * f[6]); accumulatorSample += (b[7] * f[7]); accumulatorSample += (b[8] * f[8]); accumulatorSample += (b[9] * f[9]); //we are doing our repetitive calculations on a separate value correctionSample = inputSample - accumulatorSample; //we're gonna apply the total effect of all these calculations as a single subtract inputSample -= correctionSample; //applying the distance calculation to both the dry AND the noise output to blend them //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }