/* * File: Melt.cpp * * Version: 1.0 * * Created: 1/12/17 * * Copyright: Copyright © 2017 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Melt.cpp =============================================================================*/ #include "Melt.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Melt) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::Melt //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Melt::Melt(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Melt::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Melt::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Melt::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Melt::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Melt::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Melt::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____MeltEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::MeltKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Melt::MeltKernel::Reset() { for(int count = 0; count < 32001; count++) {d[count] = 0;} for(int count = 0; count < 31; count++) {minTap[count] = 0; maxTap[count] = 0; position[count] = 1; stepTap[count] = 1;} combine = 0; scalefactor = 0.999; stepCount = 0; slowCount = 0; gcount = 0; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Melt::MeltKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Melt::MeltKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 rate = 1 / (pow(GetParameter( kParam_One ),2) + 0.001); Float64 depthB = (GetParameter( kParam_Two ) * 139.5)+2; Float64 depthA = depthB * (1.0 - GetParameter( kParam_One )); Float64 output = GetParameter( kParam_Three ) * 0.05; Float64 wet = GetParameter( kParam_Four ); Float64 dry = 1.0-wet; minTap[0] = floor(2 * depthA); maxTap[0] = floor(2 * depthB); minTap[1] = floor(3 * depthA); maxTap[1] = floor(3 * depthB); minTap[2] = floor(5 * depthA); maxTap[2] = floor(5 * depthB); minTap[3] = floor(7 * depthA); maxTap[3] = floor(7 * depthB); minTap[4] = floor(11 * depthA); maxTap[4] = floor(11 * depthB); minTap[5] = floor(13 * depthA); maxTap[5] = floor(13 * depthB); minTap[6] = floor(17 * depthA); maxTap[6] = floor(17 * depthB); minTap[7] = floor(19 * depthA); maxTap[7] = floor(19 * depthB); minTap[8] = floor(23 * depthA); maxTap[8] = floor(23 * depthB); minTap[9] = floor(29 * depthA); maxTap[9] = floor(29 * depthB); minTap[10] = floor(31 * depthA); maxTap[10] = floor(31 * depthB); minTap[11] = floor(37 * depthA); maxTap[11] = floor(37 * depthB); minTap[12] = floor(41 * depthA); maxTap[12] = floor(41 * depthB); minTap[13] = floor(43 * depthA); maxTap[13] = floor(43 * depthB); minTap[14] = floor(47 * depthA); maxTap[14] = floor(47 * depthB); minTap[15] = floor(53 * depthA); maxTap[15] = floor(53 * depthB); minTap[16] = floor(59 * depthA); maxTap[16] = floor(59 * depthB); minTap[17] = floor(61 * depthA); maxTap[17] = floor(61 * depthB); minTap[18] = floor(67 * depthA); maxTap[18] = floor(67 * depthB); minTap[19] = floor(71 * depthA); maxTap[19] = floor(71 * depthB); minTap[20] = floor(73 * depthA); maxTap[20] = floor(73 * depthB); minTap[21] = floor(79 * depthA); maxTap[21] = floor(79 * depthB); minTap[22] = floor(83 * depthA); maxTap[22] = floor(83 * depthB); minTap[23] = floor(89 * depthA); maxTap[23] = floor(89 * depthB); minTap[24] = floor(97 * depthA); maxTap[24] = floor(97 * depthB); minTap[25] = floor(101 * depthA); maxTap[25] = floor(101 * depthB); minTap[26] = floor(103 * depthA); maxTap[26] = floor(103 * depthB); minTap[27] = floor(107 * depthA); maxTap[27] = floor(107 * depthB); minTap[28] = floor(109 * depthA); maxTap[28] = floor(109 * depthB); minTap[29] = floor(113 * depthA); maxTap[29] = floor(113 * depthB); minTap[30] = floor(117 * depthA); maxTap[30] = floor(117 * depthB); long double drySample; long double inputSample; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySample = inputSample; if (gcount < 0 || gcount > 16000) {gcount = 16000;} d[gcount+16000] = d[gcount] = inputSample; if (slowCount > rate || slowCount < 0) { slowCount = 0; stepCount++; if (stepCount > 29 || stepCount < 0) {stepCount = 0;} position[stepCount] += stepTap[stepCount]; if (position[stepCount] < minTap[stepCount]) { position[stepCount] = minTap[stepCount]; stepTap[stepCount] = 1; } if (position[stepCount] > maxTap[stepCount]) { position[stepCount] = maxTap[stepCount]; stepTap[stepCount] = -1; } } scalefactor *= 0.9999; scalefactor += (100.0 - fabs(combine)) * 0.000001; combine *= scalefactor; combine -= (d[gcount+position[29]]); combine += (d[gcount+position[28]]); combine *= scalefactor; combine -= (d[gcount+position[27]]); combine += (d[gcount+position[26]]); combine *= scalefactor; combine -= (d[gcount+position[25]]); combine += (d[gcount+position[24]]); combine *= scalefactor; combine -= (d[gcount+position[23]]); combine += (d[gcount+position[22]]); combine *= scalefactor; combine -= (d[gcount+position[21]]); combine += (d[gcount+position[20]]); combine *= scalefactor; combine -= (d[gcount+position[19]]); combine += (d[gcount+position[18]]); combine *= scalefactor; combine -= (d[gcount+position[17]]); combine += (d[gcount+position[16]]); combine *= scalefactor; combine -= (d[gcount+position[15]]); combine += (d[gcount+position[14]]); combine *= scalefactor; combine -= (d[gcount+position[13]]); combine += (d[gcount+position[12]]); combine *= scalefactor; combine -= (d[gcount+position[11]]); combine += (d[gcount+position[10]]); combine *= scalefactor; combine -= (d[gcount+position[9]]); combine += (d[gcount+position[8]]); combine *= scalefactor; combine -= (d[gcount+position[7]]); combine += (d[gcount+position[6]]); combine *= scalefactor; combine -= (d[gcount+position[5]]); combine += (d[gcount+position[4]]); combine *= scalefactor; combine -= (d[gcount+position[3]]); combine += (d[gcount+position[2]]); combine *= scalefactor; combine -= (d[gcount+position[1]]); combine += (d[gcount+position[0]]); gcount--; slowCount++; inputSample = combine; if (output < 1.0) inputSample *= output; if (wet < 1.0) inputSample = (drySample * dry)+(inputSample*wet); //nice little output stage template: if we have another scale of floating point //number, we really don't want to meaninglessly multiply that by 1.0. //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }