/* * File: IronOxide5.cpp * * Version: 1.0 * * Created: 4/21/17 * * Copyright: Copyright © 2017 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= IronOxide5.cpp =============================================================================*/ #include "IronOxide5.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(IronOxide5) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::IronOxide5 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IronOxide5::IronOxide5(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); SetParameter(kParam_Six, kDefaultValue_ParamSix ); SetParameter(kParam_Seven, kDefaultValue_ParamSeven ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult IronOxide5::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult IronOxide5::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -18.0; outParameterInfo.maxValue = 18.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterTwoUnit; outParameterInfo.minValue = 1.5; outParameterInfo.maxValue = 150.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit; outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic; outParameterInfo.unitName = kParameterThreeUnit; outParameterInfo.minValue = 1.5; outParameterInfo.maxValue = 150.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; case kParam_Six: AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Decibels; outParameterInfo.minValue = -18.0; outParameterInfo.maxValue = 18.0; outParameterInfo.defaultValue = kDefaultValue_ParamSix; break; case kParam_Seven: AUBase::FillInParameterName (outParameterInfo, kParameterSevenName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = -1.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamSeven; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult IronOxide5::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult IronOxide5::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // IronOxide5::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult IronOxide5::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____IronOxide5EffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::IronOxide5Kernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void IronOxide5::IronOxide5Kernel::Reset() { int temp; for (temp = 0; temp < 263; temp++) {d[temp] = 0.0;} gcount = 0; fastIIRA = fastIIRB = slowIIRA = slowIIRB = 0.0; fastIIHA = fastIIHB = slowIIHA = slowIIHB = 0.0; iirSamplehA = iirSamplehB = 0.0; iirSampleA = iirSampleB = 0.0; prevInputSample = 0.0; flip = false; for (temp = 0; temp < 99; temp++) {fl[temp] = 0.0;} fstoredcount = 0; sweep = 0.0; rateof = 0.5; nextmax = 0.5; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // IronOxide5::IronOxide5Kernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void IronOxide5::IronOxide5Kernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 inputgain = pow(10.0,GetParameter( kParam_One )/20.0); Float64 outputgain = pow(10.0,GetParameter( kParam_Six )/20.0); Float64 ips = GetParameter( kParam_Two ) * 1.1; //slight correction to dial in convincing ips settings if (ips < 1 || ips > 200){ips=33.0;} //sanity checks are always key Float64 tempRandy = 0.04+(0.11/sqrt(ips)); Float64 randy; Float64 lps = GetParameter( kParam_Three ) * 1.1; //slight correction to dial in convincing ips settings if (lps < 1 || lps > 200){lps=33.0;} //sanity checks are always key Float64 iirAmount = lps/430.0; //for low leaning Float64 bridgerectifier; Float64 fastTaper = ips/15.0; Float64 slowTaper = 2.0/(lps*lps); Float64 lowspeedscale = (5.0/ips); long double inputSample; Float64 drySample; SInt32 count; SInt32 flutcount; Float64 flutterrandy; Float64 temp; Float64 overallscale = 1.0; overallscale /= 44100.0; overallscale *= GetSampleRate(); Float64 depth = pow(GetParameter( kParam_Four ),2)*overallscale; Float64 fluttertrim = 0.00581/overallscale; Float64 sweeptrim = (0.0005*depth)/overallscale; Float64 offset; Float64 tupi = 3.141592653589793238 * 2.0; Float64 newrate = 0.006/overallscale; Float64 oldrate = 1.0-newrate; if (overallscale == 0) {fastTaper += 1.0; slowTaper += 1.0;} else { iirAmount /= overallscale; lowspeedscale *= overallscale; fastTaper = 1.0 + (fastTaper / overallscale); slowTaper = 1.0 + (slowTaper / overallscale); } Float64 noise = GetParameter( kParam_Five ) * 0.5; Float64 invdrywet = GetParameter( kParam_Seven ); Float64 dry = 1.0; if (invdrywet > 0.0) dry -= invdrywet; while (nSampleFrames-- > 0) { inputSample = *sourceP; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySample = inputSample; flutterrandy = (rand()/(double)RAND_MAX); //part of flutter section //now we've got a random flutter, so we're messing with the pitch before tape effects go on if (fstoredcount < 0 || fstoredcount > 30) {fstoredcount = 30;} flutcount = fstoredcount; fl[flutcount+31] = fl[flutcount] = inputSample; offset = (1.0 + sin(sweep)) * depth; flutcount += (int)floor(offset); bridgerectifier = (fl[flutcount] * (1-(offset-floor(offset)))); bridgerectifier += (fl[flutcount+1] * (offset-floor(offset))); rateof = (nextmax * newrate) + (rateof * oldrate); sweep += rateof * fluttertrim; sweep += sweep * sweeptrim; if (sweep >= tupi){sweep = 0.0; nextmax = 0.02 + (flutterrandy*0.98);} fstoredcount--; inputSample = bridgerectifier; //apply to input signal, interpolate samples //all the funky renaming is just trying to fix how I never reassigned the control numbers if (flip) { iirSampleA = (iirSampleA * (1 - iirAmount)) + (inputSample * iirAmount); inputSample -= iirSampleA; } else { iirSampleB = (iirSampleB * (1 - iirAmount)) + (inputSample * iirAmount); inputSample -= iirSampleB; } //do IIR highpass for leaning out inputSample *= inputgain; bridgerectifier = fabs(inputSample); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); if (inputSample > 0.0) inputSample = bridgerectifier; else inputSample = -bridgerectifier; //preliminary gain stage using antialiasing //over to the Iron Oxide shaping code using inputsample if (gcount < 0 || gcount > 131) {gcount = 131;} count = gcount; //increment the counter d[count+131] = d[count] = inputSample; if (flip) { fastIIRA = fastIIRA/fastTaper; slowIIRA = slowIIRA/slowTaper; //scale stuff down fastIIRA += d[count]; count += 3; temp = d[count+127]; temp += d[count+113]; temp += d[count+109]; temp += d[count+107]; temp += d[count+103]; temp += d[count+101]; temp += d[count+97]; temp += d[count+89]; temp += d[count+83]; temp /= 2; temp += d[count+79]; temp += d[count+73]; temp += d[count+71]; temp += d[count+67]; temp += d[count+61]; temp += d[count+59]; temp += d[count+53]; temp += d[count+47]; temp += d[count+43]; temp += d[count+41]; temp += d[count+37]; temp += d[count+31]; temp += d[count+29]; temp /= 2; temp += d[count+23]; temp += d[count+19]; temp += d[count+17]; temp += d[count+13]; temp += d[count+11]; temp /= 2; temp += d[count+7]; temp += d[count+5]; temp += d[count+3]; temp /= 2; temp += d[count+2]; temp += d[count+1]; slowIIRA += (temp/128); inputSample = fastIIRA - (slowIIRA / slowTaper); } else { fastIIRB = fastIIRB/fastTaper; slowIIRB = slowIIRB/slowTaper; //scale stuff down fastIIRB += d[count]; count += 3; temp = d[count+127]; temp += d[count+113]; temp += d[count+109]; temp += d[count+107]; temp += d[count+103]; temp += d[count+101]; temp += d[count+97]; temp += d[count+89]; temp += d[count+83]; temp /= 2; temp += d[count+79]; temp += d[count+73]; temp += d[count+71]; temp += d[count+67]; temp += d[count+61]; temp += d[count+59]; temp += d[count+53]; temp += d[count+47]; temp += d[count+43]; temp += d[count+41]; temp += d[count+37]; temp += d[count+31]; temp += d[count+29]; temp /= 2; temp += d[count+23]; temp += d[count+19]; temp += d[count+17]; temp += d[count+13]; temp += d[count+11]; temp /= 2; temp += d[count+7]; temp += d[count+5]; temp += d[count+3]; temp /= 2; temp += d[count+2]; temp += d[count+1]; slowIIRB += (temp/128); inputSample = fastIIRB - (slowIIRB / slowTaper); } inputSample /= fastTaper; inputSample /= lowspeedscale; //inputsample side //post-center code on inputSample and halfwaySample in parallel //begin raw sample- inputSample and ataDrySample handled separately here bridgerectifier = fabs(inputSample); if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; bridgerectifier = sin(bridgerectifier); //can use as an output limiter if (inputSample > 0.0) inputSample = bridgerectifier; else inputSample = -bridgerectifier; //second stage of overdrive to prevent overs and allow bloody loud extremeness randy = (0.55 + tempRandy + ((rand()/(double)RAND_MAX)*tempRandy))*noise; //0 to 2 inputSample *= (1.0 - randy); inputSample += (prevInputSample*randy); prevInputSample = drySample; flip = !flip; //begin invdrywet block with outputgain if (outputgain != 1.0) inputSample *= outputgain; if (invdrywet != 1.0) inputSample *= invdrywet; if (dry != 1.0) drySample *= dry; if (fabs(drySample) > 0.0) inputSample += drySample; //end invdrywet block with outputgain //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }