/* * File: Holt.cpp * * Version: 1.0 * * Created: 2/4/19 * * Copyright: Copyright © 2019 Airwindows, All Rights Reserved * * Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in * consideration of your agreement to the following terms, and your use, installation, modification * or redistribution of this Apple software constitutes acceptance of these terms. If you do * not agree with these terms, please do not use, install, modify or redistribute this Apple * software. * * In consideration of your agreement to abide by the following terms, and subject to these terms, * Apple grants you a personal, non-exclusive license, under Apple's copyrights in this * original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the * Apple Software, with or without modifications, in source and/or binary forms; provided that if you * redistribute the Apple Software in its entirety and without modifications, you must retain this * notice and the following text and disclaimers in all such redistributions of the Apple Software. * Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to * endorse or promote products derived from the Apple Software without specific prior written * permission from Apple. Except as expressly stated in this notice, no other rights or * licenses, express or implied, are granted by Apple herein, including but not limited to any * patent rights that may be infringed by your derivative works or by other works in which the * Apple Software may be incorporated. * * The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE * OR IN COMBINATION WITH YOUR PRODUCTS. * * IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, * REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER * UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN * IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /*============================================================================= Holt.cpp =============================================================================*/ #include "Holt.h" //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ COMPONENT_ENTRY(Holt) //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::Holt //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Holt::Holt(AudioUnit component) : AUEffectBase(component) { CreateElements(); Globals()->UseIndexedParameters(kNumberOfParameters); SetParameter(kParam_One, kDefaultValue_ParamOne ); SetParameter(kParam_Two, kDefaultValue_ParamTwo ); SetParameter(kParam_Three, kDefaultValue_ParamThree ); SetParameter(kParam_Four, kDefaultValue_ParamFour ); SetParameter(kParam_Five, kDefaultValue_ParamFive ); #if AU_DEBUG_DISPATCHER mDebugDispatcher = new AUDebugDispatcher (this); #endif } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::GetParameterValueStrings //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Holt::GetParameterValueStrings(AudioUnitScope inScope, AudioUnitParameterID inParameterID, CFArrayRef * outStrings) { return kAudioUnitErr_InvalidProperty; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::GetParameterInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Holt::GetParameterInfo(AudioUnitScope inScope, AudioUnitParameterID inParameterID, AudioUnitParameterInfo &outParameterInfo ) { ComponentResult result = noErr; outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable | kAudioUnitParameterFlag_IsReadable; if (inScope == kAudioUnitScope_Global) { switch(inParameterID) { case kParam_One: AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamOne; break; case kParam_Two: AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamTwo; break; case kParam_Three: AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 4.0; outParameterInfo.defaultValue = kDefaultValue_ParamThree; break; case kParam_Four: AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFour; break; case kParam_Five: AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false); outParameterInfo.unit = kAudioUnitParameterUnit_Generic; outParameterInfo.minValue = 0.0; outParameterInfo.maxValue = 1.0; outParameterInfo.defaultValue = kDefaultValue_ParamFive; break; default: result = kAudioUnitErr_InvalidParameter; break; } } else { result = kAudioUnitErr_InvalidParameter; } return result; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::GetPropertyInfo //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Holt::GetPropertyInfo (AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32 & outDataSize, Boolean & outWritable) { return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable); } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::GetProperty //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Holt::GetProperty( AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void * outData ) { return AUEffectBase::GetProperty (inID, inScope, inElement, outData); } // Holt::Initialize //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComponentResult Holt::Initialize() { ComponentResult result = AUEffectBase::Initialize(); if (result == noErr) Reset(kAudioUnitScope_Global, 0); return result; } #pragma mark ____HoltEffectKernel //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::HoltKernel::Reset() //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Holt::HoltKernel::Reset() { previousSampleA = 0.0; previousTrendA = 0.0; previousSampleB = 0.0; previousTrendB = 0.0; previousSampleC = 0.0; previousTrendC = 0.0; previousSampleD = 0.0; previousTrendD = 0.0; fpNShape = 0.0; } //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Holt::HoltKernel::Process //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ void Holt::HoltKernel::Process( const Float32 *inSourceP, Float32 *inDestP, UInt32 inFramesToProcess, UInt32 inNumChannels, bool &ioSilence ) { UInt32 nSampleFrames = inFramesToProcess; const Float32 *sourceP = inSourceP; Float32 *destP = inDestP; Float64 alpha = pow(GetParameter( kParam_One ),4)+0.00001; if (alpha > 1.0) alpha = 1.0; Float64 beta = (alpha * pow(GetParameter( kParam_Two ),2))+0.00001; alpha += ((1.0-beta)*pow(GetParameter( kParam_One ),3)); //correct for droop in frequency if (alpha > 1.0) alpha = 1.0; long double trend; long double forecast; //defining these here because we're copying the routine four times Float64 aWet = 1.0; Float64 bWet = 1.0; Float64 cWet = 1.0; Float64 dWet = GetParameter( kParam_Three ); //four-stage wet/dry control using progressive stages that bypass when not engaged if (dWet < 1.0) {aWet = dWet; bWet = 0.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 2.0) {bWet = dWet - 1.0; cWet = 0.0; dWet = 0.0;} else if (dWet < 3.0) {cWet = dWet - 2.0; dWet = 0.0;} else {dWet -= 3.0;} //this is one way to make a little set of dry/wet stages that are successively added to the //output as the control is turned up. Each one independently goes from 0-1 and stays at 1 //beyond that point: this is a way to progressively add a 'black box' sound processing //which lets you fall through to simpler processing at lower settings. Float64 gain = GetParameter( kParam_Four ); Float64 wet = GetParameter( kParam_Five ); while (nSampleFrames-- > 0) { long double inputSample = *sourceP; static int noisesource = 0; int residue; double applyresidue; noisesource = noisesource % 1700021; noisesource++; residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSample += applyresidue; if (inputSample<1.2e-38 && -inputSample<1.2e-38) { inputSample -= applyresidue; } //for live air, we always apply the dither noise. Then, if our result is //effectively digital black, we'll subtract it again. We want a 'air' hiss long double drySample = inputSample; if (aWet > 0.0) { trend = (beta * (inputSample - previousSampleA) + ((0.999-beta) * previousTrendA)); forecast = previousSampleA + previousTrendA; inputSample = (alpha * inputSample) + ((0.999-alpha) * forecast); previousSampleA = inputSample; previousTrendA = trend; inputSample = (inputSample * aWet) + (drySample * (1.0-aWet)); } if (bWet > 0.0) { trend = (beta * (inputSample - previousSampleB) + ((0.999-beta) * previousTrendB)); forecast = previousSampleB + previousTrendB; inputSample = (alpha * inputSample) + ((0.999-alpha) * forecast); previousSampleB = inputSample; previousTrendB = trend; inputSample = (inputSample * bWet) + (previousSampleA * (1.0-bWet)); } if (cWet > 0.0) { trend = (beta * (inputSample - previousSampleC) + ((0.999-beta) * previousTrendC)); forecast = previousSampleC + previousTrendC; inputSample = (alpha * inputSample) + ((0.999-alpha) * forecast); previousSampleC = inputSample; previousTrendC = trend; inputSample = (inputSample * cWet) + (previousSampleB * (1.0-cWet)); } if (dWet > 0.0) { trend = (beta * (inputSample - previousSampleD) + ((0.999-beta) * previousTrendD)); forecast = previousSampleD + previousTrendD; inputSample = (alpha * inputSample) + ((0.999-alpha) * forecast); previousSampleD = inputSample; previousTrendD = trend; inputSample = (inputSample * dWet) + (previousSampleC * (1.0-dWet)); } if (gain < 1.0) { inputSample *= gain; } //clip to 1.2533141373155 to reach maximum output if (inputSample > 1.2533141373155) inputSample = 1.2533141373155; if (inputSample < -1.2533141373155) inputSample = -1.2533141373155; inputSample = sin(inputSample * fabs(inputSample)) / ((inputSample == 0.0) ?1:fabs(inputSample)); if (wet < 1.0) { inputSample = (inputSample*wet)+(drySample*(1.0-wet)); } //32 bit dither, made small and tidy. int expon; frexpf((Float32)inputSample, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSample += (dither-fpNShape); fpNShape = dither; //end 32 bit dither *destP = inputSample; sourceP += inNumChannels; destP += inNumChannels; } }